Home
Class 11
MATHS
Find the modulus and argument of the com...

Find the modulus and argument of the complex number `(1+2i)/(1-3i)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus and argument of the complex number \(\frac{1+2i}{1-3i}\), we will follow these steps: ### Step 1: Multiply by the Conjugate We start by multiplying the numerator and the denominator by the conjugate of the denominator. The conjugate of \(1 - 3i\) is \(1 + 3i\). \[ \frac{1+2i}{1-3i} \cdot \frac{1+3i}{1+3i} = \frac{(1+2i)(1+3i)}{(1-3i)(1+3i)} \] ### Step 2: Simplify the Denominator The denominator can be simplified using the difference of squares formula: \[ (1-3i)(1+3i) = 1^2 - (3i)^2 = 1 - 9(-1) = 1 + 9 = 10 \] ### Step 3: Simplify the Numerator Now, we simplify the numerator: \[ (1+2i)(1+3i) = 1 \cdot 1 + 1 \cdot 3i + 2i \cdot 1 + 2i \cdot 3i = 1 + 3i + 2i + 6i^2 \] Since \(i^2 = -1\), we have: \[ 6i^2 = 6(-1) = -6 \] Thus, the numerator becomes: \[ 1 + 3i + 2i - 6 = -5 + 5i \] ### Step 4: Combine the Results Now we can combine the results: \[ \frac{-5 + 5i}{10} = -\frac{1}{2} + \frac{1}{2}i \] ### Step 5: Find the Modulus The modulus of a complex number \(x + yi\) is given by: \[ |z| = \sqrt{x^2 + y^2} \] In our case, \(x = -\frac{1}{2}\) and \(y = \frac{1}{2}\): \[ |z| = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{1}{4}} = \sqrt{\frac{2}{4}} = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} \] ### Step 6: Find the Argument The argument \(\theta\) of a complex number can be found using: \[ \tan \theta = \frac{y}{x} \] Here, \(y = \frac{1}{2}\) and \(x = -\frac{1}{2}\): \[ \tan \theta = \frac{\frac{1}{2}}{-\frac{1}{2}} = -1 \] The angle whose tangent is \(-1\) is \(-\frac{\pi}{4}\) or \(\frac{3\pi}{4}\) (since we are in the second quadrant where \(x\) is negative and \(y\) is positive). Thus, the argument is: \[ \theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4} \] ### Final Result The modulus and argument of the complex number \(\frac{1+2i}{1-3i}\) are: \[ \text{Modulus} = \frac{1}{\sqrt{2}}, \quad \text{Argument} = \frac{3\pi}{4} \]

To find the modulus and argument of the complex number \(\frac{1+2i}{1-3i}\), we will follow these steps: ### Step 1: Multiply by the Conjugate We start by multiplying the numerator and the denominator by the conjugate of the denominator. The conjugate of \(1 - 3i\) is \(1 + 3i\). \[ \frac{1+2i}{1-3i} \cdot \frac{1+3i}{1+3i} = \frac{(1+2i)(1+3i)}{(1-3i)(1+3i)} \] ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|17 Videos
  • CONIC SECTIONS

    NCERT ENGLISH|Exercise EXERCISE 11.1|15 Videos

Similar Questions

Explore conceptually related problems

Find the modulus and argument of -3.

Find the modulus and argument of the complex number (2+i)/(4i+(1+i)^(2))

Find the modulus and argument of -4i.

Find the modulus and argument of the complex numbers : (i) (1+i)/(1-i) (ii) 1/(1+i)

Find the modulus and argument of the complex number (2 + i)/(4i + (1+ i)^(2))

Express the comple number ((1+sqrt(3)i)^(2))/(sqrt(3)-i) in the form of a+ib . Hence find the modulus and argument of the complex number.

Find the modulus and argument of the following complex number (1+2i)/(1-3i)

Find the modulus and argument of the following complex number: (1+i)/(1-i)

Find the modulus and argument of the following complex number: 1/(1+i)

Find the modulus and argument of the complex number 3sqrt2 -3sqrt2i .

NCERT ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-All Questions
  1. Convert of the complex number in the polar form: 1-i

    Text Solution

    |

  2. Let z1=2-i ,z2=-2+i. Find (i) Re ((z1z2)/( bar z1)) (ii) Im(1/(z1 b...

    Text Solution

    |

  3. Find the modulus and argument of the complex number (1+2i)/(1-3i).

    Text Solution

    |

  4. If z1=2-i ,z2=1+i ,find |(z1+z2+1)/(z1-z2+i)|

    Text Solution

    |

  5. If a + i b =((x+i)^2)/(2x^2+1),prove that a^2+b^2=((x^2+1)^2)/((2x^2+...

    Text Solution

    |

  6. Convert of the complex number in the polar form: i

    Text Solution

    |

  7. If alphaand betaare different complex numbers with |beta|=1,then fin...

    Text Solution

    |

  8. Find the real numbers x and y if (x-i y)(3+5i) is the conjugate of -6...

    Text Solution

    |

  9. Find the modulus of (1+i)/(1-i)-(1-i)/(1+i).

    Text Solution

    |

  10. Convert of the complex number in the polar form: -1-i

    Text Solution

    |

  11. Find the modulus and the arguments of the complex number z = - 1 - is...

    Text Solution

    |

  12. Find the modulus and the arguments of the complex number z=-sqrt(3)+i

    Text Solution

    |

  13. Convert the complex number z=(i-1)/(cospi/3+isinpi/3)in the polar form...

    Text Solution

    |

  14. Find real theta such that (3+2isintheta)/(1-2isintheta)is purely real...

    Text Solution

    |

  15. If x + i y =(a+i b)/(a-i b),prove that x^2+y^2=1.

    Text Solution

    |

  16. Find the modulus and argument of the complex numbers : (i) (1+i)/(1-i...

    Text Solution

    |

  17. Find the conjugate of ((3-2i)(2+3i))/((1+2i)(2-i)).

    Text Solution

    |

  18. Solve: sqrt(5)x^(2) + x + sqrt(5) = 0

    Text Solution

    |

  19. Solve x^2+x+1=0.

    Text Solution

    |

  20. Convert of the complex number in the polar form: -1 + i

    Text Solution

    |