Home
Class 11
MATHS
Find the conjugate of ((3-2i)(2+3i))/((1...

Find the conjugate of `((3-2i)(2+3i))/((1+2i)(2-i))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the conjugate of the complex number \(\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}\), we will follow these steps: ### Step 1: Calculate the numerator The numerator is \((3-2i)(2+3i)\). We will use the distributive property (FOIL method) to expand this. \[ (3-2i)(2+3i) = 3 \cdot 2 + 3 \cdot 3i - 2i \cdot 2 - 2i \cdot 3i \] Calculating each term: - \(3 \cdot 2 = 6\) - \(3 \cdot 3i = 9i\) - \(-2i \cdot 2 = -4i\) - \(-2i \cdot 3i = -6i^2\) (Recall that \(i^2 = -1\), so this becomes \(+6\)) Combining these results: \[ 6 + 9i - 4i + 6 = 12 + 5i \] ### Step 2: Calculate the denominator The denominator is \((1+2i)(2-i)\). Again, we will use the distributive property. \[ (1+2i)(2-i) = 1 \cdot 2 + 1 \cdot (-i) + 2i \cdot 2 + 2i \cdot (-i) \] Calculating each term: - \(1 \cdot 2 = 2\) - \(1 \cdot (-i) = -i\) - \(2i \cdot 2 = 4i\) - \(2i \cdot (-i) = -2i^2 = +2\) Combining these results: \[ 2 - i + 4i + 2 = 4 + 3i \] ### Step 3: Form the complex number Now we can form the complex number: \[ z = \frac{12 + 5i}{4 + 3i} \] ### Step 4: Multiply by the conjugate of the denominator To simplify, we multiply the numerator and denominator by the conjugate of the denominator, which is \(4 - 3i\). \[ z = \frac{(12 + 5i)(4 - 3i)}{(4 + 3i)(4 - 3i)} \] Calculating the denominator: \[ (4 + 3i)(4 - 3i) = 4^2 - (3i)^2 = 16 - 9(-1) = 16 + 9 = 25 \] Calculating the numerator: \[ (12 + 5i)(4 - 3i) = 12 \cdot 4 + 12 \cdot (-3i) + 5i \cdot 4 + 5i \cdot (-3i) \] Calculating each term: - \(12 \cdot 4 = 48\) - \(12 \cdot (-3i) = -36i\) - \(5i \cdot 4 = 20i\) - \(5i \cdot (-3i) = -15i^2 = +15\) Combining these results: \[ 48 + 15 - 36i + 20i = 63 - 16i \] ### Step 5: Final expression for \(z\) Thus, we have: \[ z = \frac{63 - 16i}{25} = \frac{63}{25} - \frac{16}{25}i \] ### Step 6: Find the conjugate of \(z\) The conjugate of a complex number \(x + yi\) is \(x - yi\). Therefore, the conjugate of \(z\) is: \[ \overline{z} = \frac{63}{25} + \frac{16}{25}i \] ### Final Answer The conjugate of \(\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}\) is: \[ \overline{z} = \frac{63}{25} + \frac{16}{25}i \]

To find the conjugate of the complex number \(\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}\), we will follow these steps: ### Step 1: Calculate the numerator The numerator is \((3-2i)(2+3i)\). We will use the distributive property (FOIL method) to expand this. \[ (3-2i)(2+3i) = 3 \cdot 2 + 3 \cdot 3i - 2i \cdot 2 - 2i \cdot 3i \] ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|17 Videos
  • CONIC SECTIONS

    NCERT ENGLISH|Exercise EXERCISE 11.1|15 Videos

Similar Questions

Explore conceptually related problems

Find the conjugate of 1/(2 +5i)

Find the conjugate of ((1-2i)^(2))/(2 + i)

The conjugate of (1)/(1-2i) is

Find the conjugate of 1/(3+4i)dot

The conjugate of ((1+2i)^(2))/(3-i) is

Write the conjugate of (3+4i)^(2)

Write the conjugate of (2-i)/((1-2i)^2) .

What is the conjugate of (2-i)/((1-2i)^(2)) ?

Find the modulus of ((3+2i)^(2))/(4-3i)

Find the conjugates of the following complex number: ((3-2i)(2+3i))/((1+2i)(2-i))