Home
Class 11
MATHS
Express the following expression in the ...

Express the following expression in the form of `a + i b``((3+isqrt(5))(3-isqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-isqrt(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To express the given expression in the form of \( a + ib \), we will follow these steps: Given expression: \[ \frac{(3 + i\sqrt{5})(3 - i\sqrt{5})}{(\sqrt{3} + i\sqrt{2}) - (\sqrt{3} - i\sqrt{2})} \] ### Step 1: Simplify the Numerator The numerator can be simplified using the difference of squares formula: \[ (3 + i\sqrt{5})(3 - i\sqrt{5}) = 3^2 - (i\sqrt{5})^2 \] Calculating this: \[ = 9 - (i^2 \cdot 5) = 9 - (-5) = 9 + 5 = 14 \] ### Step 2: Simplify the Denominator Now, simplify the denominator: \[ (\sqrt{3} + i\sqrt{2}) - (\sqrt{3} - i\sqrt{2}) = \sqrt{3} + i\sqrt{2} - \sqrt{3} + i\sqrt{2} \] This simplifies to: \[ 2i\sqrt{2} \] ### Step 3: Combine the Results Now, we can substitute the simplified numerator and denominator back into the expression: \[ \frac{14}{2i\sqrt{2}} \] ### Step 4: Simplify the Fraction We can simplify this fraction: \[ = \frac{14}{2i\sqrt{2}} = \frac{7}{i\sqrt{2}} \] ### Step 5: Rationalize the Denominator To express this in the form \( a + ib \), we multiply the numerator and denominator by \( -i \): \[ = \frac{7 \cdot (-i)}{i\sqrt{2} \cdot (-i)} = \frac{-7i}{-\sqrt{2}} = \frac{7i}{\sqrt{2}} \] ### Step 6: Express in the Form \( a + ib \) This can be expressed as: \[ 0 + i\frac{7}{\sqrt{2}} \] Thus, we have: \[ a = 0, \quad b = \frac{7}{\sqrt{2}} \] ### Final Answer The expression in the form \( a + ib \) is: \[ 0 + i\frac{7}{\sqrt{2}} \]

To express the given expression in the form of \( a + ib \), we will follow these steps: Given expression: \[ \frac{(3 + i\sqrt{5})(3 - i\sqrt{5})}{(\sqrt{3} + i\sqrt{2}) - (\sqrt{3} - i\sqrt{2})} \] ### Step 1: Simplify the Numerator ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|17 Videos
  • CONIC SECTIONS

    NCERT ENGLISH|Exercise EXERCISE 11.1|15 Videos

Similar Questions

Explore conceptually related problems

Express the following in the standard form a+i b :((3+isqrt(5))(3-isqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-isqrt(2))) .

Express the following in the form a+i b :(5i)(-3/5i)

([(sqrt(2)+isqrt(3))+(sqrt(2)-isqrt(3))])/([(sqrt(3)+1sqrt(2))+(sqrt(3)-1sqrt(2))])

Express the following in the form a+bi, where a and b are real numbers ((3 + sqrt5i) (3-sqrt5i))/((sqrt3+sqrt2i)- (sqrt3-sqrt2i))

Express the following in the form a + i b (i) (5+sqrt(2i))/(1-sqrt(2i)) (ii) i^(-35)

Express each of the following in the form a+i b :(-sqrt(3)+\ sqrt(-2))(2sqrt(3)-i)

Express in the form of a+ib: (sqrt3 - isqrt2)/(2sqrt3-isqrt3)

Express the following in the form a+ bi sqrt((5(2+i))/(2-i))

Express each of the following in the form a+i b :(5-3i)^3

Simplify the following expressions: (i) (3+sqrt(3))\ (3-sqrt(3)) (ii) (sqrt(5)-\ sqrt(2)\ )(sqrt(5)+sqrt(2))