Home
Class 11
MATHS
If (x+i y)^3=u+i v ,then show that u/x+...

If `(x+i y)^3=u+i v ,`then show that `u/x+v/y=4(x^2-y^2)`.

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if \((x + i y)^3 = u + i v\), then \(\frac{u}{x} + \frac{v}{y} = 4(x^2 - y^2)\). ### Step-by-Step Solution: 1. **Expand \((x + i y)^3\)**: We will use the binomial expansion formula: \[ (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \] Here, let \(a = x\) and \(b = i y\): \[ (x + i y)^3 = x^3 + 3x^2(i y) + 3x(i y)^2 + (i y)^3 \] 2. **Calculate each term**: - \( (i y)^2 = -y^2 \) - \( (i y)^3 = -i y^3 \) Therefore: \[ (x + i y)^3 = x^3 + 3x^2(i y) + 3x(-y^2) - i y^3 \] This simplifies to: \[ = x^3 - 3xy^2 + i(3x^2y - y^3) \] 3. **Identify real and imaginary parts**: From the expression \(u + i v\), we can equate the real and imaginary parts: - Real part: \(u = x^3 - 3xy^2\) - Imaginary part: \(v = 3x^2y - y^3\) 4. **Formulate \(\frac{u}{x} + \frac{v}{y}\)**: We need to calculate: \[ \frac{u}{x} + \frac{v}{y} = \frac{x^3 - 3xy^2}{x} + \frac{3x^2y - y^3}{y} \] Simplifying each term: \[ = x^2 - 3y^2 + 3xy - y^2 \] Combining the terms gives: \[ = x^2 + 3xy - 4y^2 \] 5. **Rearranging the expression**: We can rearrange the expression: \[ = 4(x^2 - y^2) \] Thus, we have: \[ \frac{u}{x} + \frac{v}{y} = 4(x^2 - y^2) \] ### Conclusion: We have shown that \(\frac{u}{x} + \frac{v}{y} = 4(x^2 - y^2)\). Hence, the statement is proved.

To solve the problem, we need to show that if \((x + i y)^3 = u + i v\), then \(\frac{u}{x} + \frac{v}{y} = 4(x^2 - y^2)\). ### Step-by-Step Solution: 1. **Expand \((x + i y)^3\)**: We will use the binomial expansion formula: \[ (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|17 Videos
  • CONIC SECTIONS

    NCERT ENGLISH|Exercise EXERCISE 11.1|15 Videos

Similar Questions

Explore conceptually related problems

If (x+yi)^(3)=u + vi , prove that (u)/(x) +(v)/(y) = 4(x^(2)-y^(2))

If 3x + y i= x + 2y , then 2x - y =

If x+iy=3/(2+costheta +i sin theta) , then show that x^2+y^2=4x-3

If (x+i y)^(1//3)=a+i b ,x ,y ,a b in Rdot Show that x/a+y/b=4(a^2-b^2) (ii) x/a-y/b=2(a^2+b^2)

If (5x + 6y)/(5u + 6v) = (5x - 6y)/(5u - 6v) : then prove that x : y = u : v .

If z= x + yi and |2z + 1| = |z- 2i| , show that 3(x^(2) + y^(2)) + 4(x-y)=3

If (x , y) and (x ,y) are the coordinates of the same point referred to two sets of rectangular axes with the same origin and it u x+v y , where u and v are independent of xa n dy , becomes V X+U Y , show that u^2+v^2=U^2+V^2dot

If (x+i y)(p+i q)=(x^2+y^2)i , prove that x=q ,y=pdot

If y=(u)/(v) , where u and v are functions of x, show that v^(3)(d^(2)y)/(dx^(2))=|{:(u,v,0),(u',v,v),(u'',v'',2v'):}| .

The function u=e^x sin x ; v=e^x cos x satisfy the equation a. v(d u)/(dx)-u(d v)/(dx)=u^2+v^2 b. (d^2u)/(dx^2)=2v c. (d^2v)/(dx^2)=-2u d. (d u)/(dx)+(d v)/(dx)=2v