Home
Class 11
MATHS
If ^n C9=^n C8,find ^nC17...

If `^n C_9=^n C_8,`find `^nC_17`

A

17

B

1

C

17!

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( ^nC_9 = ^nC_8 \), we will follow these steps: ### Step 1: Understand the given equation We know from the properties of combinations that: \[ ^nC_r = \frac{n!}{r!(n-r)!} \] Given \( ^nC_9 = ^nC_8 \), we can express this as: \[ \frac{n!}{9!(n-9)!} = \frac{n!}{8!(n-8)!} \] ### Step 2: Simplify the equation Since \( n! \) appears in both sides, we can cancel it out (assuming \( n \geq 9 \)): \[ \frac{1}{9!(n-9)!} = \frac{1}{8!(n-8)!} \] ### Step 3: Cross-multiply Cross-multiplying gives us: \[ 8!(n-8)! = 9!(n-9)! \] ### Step 4: Substitute \( 9! \) and simplify We know that \( 9! = 9 \times 8! \), so we can substitute: \[ 8!(n-8)! = 9 \times 8!(n-9)! \] Now, we can cancel \( 8! \) from both sides (again assuming \( n \geq 8 \)): \[ (n-8)! = 9(n-9)! \] ### Step 5: Simplify further Using the fact that \( (n-8)! = (n-8)(n-9)! \), we can rewrite the equation: \[ (n-8)(n-9)! = 9(n-9)! \] Now, we can cancel \( (n-9)! \) from both sides (assuming \( n \geq 9 \)): \[ n - 8 = 9 \] ### Step 6: Solve for \( n \) Solving the equation gives: \[ n = 17 \] ### Step 7: Find \( ^nC_{17} \) Now that we have \( n = 17 \), we need to find \( ^{17}C_{17} \): \[ ^{17}C_{17} = \frac{17!}{17! \cdot 0!} = \frac{17!}{17! \cdot 1} = 1 \] ### Final Answer Thus, the value of \( ^{n}C_{17} \) is: \[ \boxed{1} \]

To solve the problem where \( ^nC_9 = ^nC_8 \), we will follow these steps: ### Step 1: Understand the given equation We know from the properties of combinations that: \[ ^nC_r = \frac{n!}{r!(n-r)!} \] Given \( ^nC_9 = ^nC_8 \), we can express this as: ...
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    NCERT ENGLISH|Exercise MISCELLANEOUS EXERCISE|11 Videos
  • PERMUTATIONS AND COMBINATIONS

    NCERT ENGLISH|Exercise EXERCISE 7.4|9 Videos
  • MATHEMATICAL REASONING

    NCERT ENGLISH|Exercise EXERCISE 14.4|4 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NCERT ENGLISH|Exercise EXERCISE 4.1|24 Videos

Similar Questions

Explore conceptually related problems

If .^nC_12=^nC_8 , find .^nC_17 and ^22C_n

If .^nC_30=^nC_4 , find n

If .^nC_(n-4)=15 , find .^nC_6

If .^(n)C_(9)=.^(n)C_(7) , find n.

If \ ^n C_(12)=\ \ ^n C_5,\ find the value of n

If ""^(n)C_4= ""^(n)C_6, find n.

If .^nC_4, ^nC_5 and .^nC_6 are in A.P. then n is equal to (A) 11 (B) 14 (C) 12 (D) 9

If \ ^n C_(12)=\ \ ^n C_8 then n=

If ""^n C_8=""^n C_2, Solve ""^n C_2

If .^(n)C_(8) = .^(n)C_(2) , find .^(n)C_(2) .