Home
Class 11
MATHS
Show that (1xx2^2+2xx3^2+dotdotdot+nxx(n...

Show that `(1xx2^2+2xx3^2+dotdotdot+nxx(n+1)^2)/(1^2xx2+2^2xx3+dotdotdot+n^2xx(n+1))=(3n+5)/(3n+1)dot`

Text Solution

Verified by Experts

Taking L.H.S.

`(1xx2^2+2xx3^2+......+nxx(n+1)^2)/(1^2xx2+2^2xx3+......+n^2xx(n+1))`

We will solve denominator & numerator separately

Solving numerator
Let numerator be
`S_1=(1xx2^2+2xx3^2+......+nxx(n+1)^2)`

`n^(th)` term is `nxx(n+1)^2`
Let `a_n=n(n+1)^2`
` " " " =n(n^2+1+2n)`
` " " " =n^3+n+2n^2`

Now finding `S_1`

`S_1=sum_(n=1)^na_n`

` " " " " =sum_(n=1)^n(n^3+n+2n^2)`

` " " " " =sum_(n=1)^n(n^3)+sum_(n=1)^n n+sum_(n=1)^n2n^2`

` " " " " =sum_(n=1)^n(n^3)+2sum_(n=1)^n n^2+sum_(n=1)^n n`

` " " " " =((n(n+1))/2)^2+2((n(n+1)(2n+1))/6)+(n(n+1))/2`

` " " " " =(n(n+1))/2((n(n+1))/2+(2(2n+1))/3+1)`

` " " " " =(n(n+1))/2((3n(n+1)+2xx2(2n+1)+6)/6)`

` " " " " =(n(n+1))/(2xx6)(3n(n+1)+2xx2(2n+1)+6)`

` " " " " =(n(n+1))/(12)(3n^2+3n+8n+4+6)`

` " " " " =(n(n+1))/(12)(3n^2+11n+10)`

` " " " " =(n(n+1))/(12)(3n^2+5n+6n+10)`

` " " " " =(n(n+1))/(12)((3n+2)(3n+5))`

Thus, `S_1 =(n(n+1))/(12)((3n+2)(3n+5))`

Now solving denominator
Let denominator be
`S_2=1^2xx2+2^2xx3+......+n^2xx(n+1)`
`n^(th)` term is `n^2(n+1)`
Let `b_n=n^2(n+1)`
`b_n=n^3+n^2`

Now, calculating `S_2`

`S_2=sum_(n=1)^nb_n`

` " " " " =sum_(n=1)^n (n^3+n^2)`

` " " " " =sum_(n=1)^n n^3+sum_(n=1)^n n^2`

` " " " " =((n(n+1))/2)^2+((n(n+1)(2n+1))/6)`

` " " " " =(n(n+1))/2[(n(n+1))/2+((2n+1))/3)`

` " " " " =(n(n+1))/2((3n(n+1)+2(2n+1))/(6))`

` " " " " =(n(n+1))/(2xx6)(3n(n+1)+2(2n+1))`

` " " " " =(n(n+1))/(12)(3n^2+7n+2)`

` " " " " =(n(n+1))/(12)(3n^2+6n+n+2)`

` " " " " =(n(n+1))/(12)(3n(n+2)+1(n+2))`

` " " " " =(n(n+1)(n+2)(3n+1))/(12)`

Thus, `S_2 =(n(n+1)(n+2)(3n+1))/(12)`

Now, Taking L.H.S.

`(1xx2^2+2xx3^2+......+nxx(n+1)^2)/(1^2xx2+2^2xx3+......+n^2xx(n+1))=(S_1)/(S_2)`

` " " " " =((n(n+1)(n+2)(3n+5))/(12))/((n(n+1)(n+2)(3n+1))/(12))`

` " " " " =(n(n+1)(n+2)(3n+5))/(12)xx(12)/(n(n+1)(n+2)(3n+1))`

` " " " " =(n(n+1)(n+2)(3n+5))/(n(n+1)(n+2)(3n+1))`

` " " " " =(3n+5)/(3n+1)`

` " " " " =` R.H.S.

Hence, L.H.S. = R.H.S.

Hence Proved
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|24 Videos
  • SEQUENCES AND SERIES

    NCERT ENGLISH|Exercise EXERCISE 9.2|18 Videos
  • RELATIONS AND FUNCTIONS

    NCERT ENGLISH|Exercise EXERCISE 2.3|5 Videos
  • SETS

    NCERT ENGLISH|Exercise EXERCISE 1.5|7 Videos

Similar Questions

Explore conceptually related problems

Prove that 1^2+2^2+dotdotdot+n^2>(n^3)/3, n in N

Show that (1 xx 2^(2) + 2 xx 3^(2) + . . . + n xx ( n + 1) ^(2))/( 1 ^(2) xx 2 + 2^(2) xx 3 + . . . + n^(2) xx ( n + 1) ) = ( 3 n + 5)/( 3 n + 1 )

Prove that 1^1xx2^2xx3^3xxxxn^nlt=[(2n+1)//3]^(n(n+1)//2),n in Ndot

Find the sum to n terms of the series : 3xxa^2+5xx2^2+7xx3^2+dotdotdot

For all ngeq1 , prove that 1/(1. 2)+1/(2. 3)+1/(3. 4)+dotdotdot+1/(n(n+1))=n/(n+1)

For all n geq1 , prove that 1^2+2^2+3^2+4^2+dotdotdot+n^2= (n(n+1)(2n+1))/6

if (9^nxx3^2xx3^n-(27)^n)/((3^3)^5xx2^3)=1/(27), find the value of n

Prove the following by using the principle of mathematical induction for all n in N : 1^2+3^2+5^2+dotdotdot+(2n-1)^2=(n(2n-1)(2n+1))/3

Find the value of n : (2^(3)xx5^(n+1)xx10^(2)xx5^(n-1))/(125xx5^(n-2)xx2^(7))=(25)/(4)

Given that (1 + i)/(1 + 2^(2)i) xx (1 + 3^(2) i)/(1 + 4^(2) i) xx….xx (1 + (2n-1)^(2)i)/(1+(2n)^(2)i)= (a + bi)/(c+di) , show that (2)/(17) xx (82)/(257) xx ….xx ((2n-1)^(4) + 1)/((2n)^(4) + 1) = (a^(2) + b^(2))/(c^(2) + d^(2))