Home
Class 11
MATHS
Let a1,a2,.....,anbe fixed real numbers...

Let `a_1,a_2,.....,a_n`be fixed real numbers and define a function f(x) = `(x-a_1) (x-a_2).....(x-a_n)`. What is `(lim)_(x->a_1)f(x)`? For some `a!=a_1,a_2,.....,a_n`, compute `(lim)_(x->a)f(x)`

Text Solution

AI Generated Solution

To solve the problem step by step, we need to find two limits for the function \( f(x) = (x - a_1)(x - a_2) \cdots (x - a_n) \). ### Step 1: Compute \( \lim_{x \to a_1} f(x) \) 1. **Substitute \( f(x) \)**: \[ f(x) = (x - a_1)(x - a_2) \cdots (x - a_n) \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|25 Videos
  • LIMITS AND DERIVATIVES

    NCERT ENGLISH|Exercise MISCELLANEOUS EXERCISE|30 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT ENGLISH|Exercise EXERCISE 12.1|4 Videos
  • LINEAR INEQUALITIES

    NCERT ENGLISH|Exercise EXERCISE 6.2|10 Videos

Similar Questions

Explore conceptually related problems

If a_1,a_2,a_3,....a_n are positive real numbers whose product is a fixed number c, then the minimum value of a_1+a_2+.......a_(n-1)+2a_n is

If a_1,a_2,a_3,....a_n are positive real numbers whose product is a fixed number c, then the minimum value of a_1+a_2+....+a_(n-1)+3a_n is

If a_1,a_2 ...a_n are nth roots of unity then 1/(1-a_1) +1/(1-a_2)+1/(1-a_3)..+1/(1-a_n) is equal to

Let a_1, a_2, a_3, ...a_(n) be an AP. then: 1 / (a_1 a_n) + 1 / (a_2 a_(n-1)) + 1 /(a_3a_(n-2))+......+ 1 /(a_(n) a_1) =

cIf a_1,a_2,a_3,..,a_n in R then (x-a_1)^2+(x-a_2)^2+....+(x-a_n)^2 assumes its least value at x=

If S=a_1+a_2+......+a_n,a_i in R^+ for i=1 to n, then prove that S/(S-a_1)+S/(S-a_2)+......+S/(S-a_n) ge n^2/(n-1), AA n ge 2

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

Let a_1,a_2,.........a_n be real numbers such that sqrt(a_1)+sqrt(a_2-1)+sqrt(a_3-2)++sqrt(a_n-(n-1))=1/2(a_1+a_2+.......+a_n)-(n(n-3)/4 then find the value of sum_(i=1)^100 a_i

Let a_1,a_2,.........a_n be real numbers such that sqrt(a_1)+sqrt(a_2-1)+sqrt(a_3-2)++sqrt(a_n-(n-1))=1/2(a_1+a_2+.......+a_n)-(n(n-3)/4 then find the value of sum_(i=1)^100 a_i

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :