Home
Class 11
MATHS
Evaluate ("lim")(x->0)f(x),\ w h e r e\ ...

Evaluate `("lim")_(x->0)f(x),\ w h e r e\ f(x)={(|x|)/x ,\ x!=0 , 0,\ x=0`

Text Solution

Verified by Experts

To find the limit at x=0 we should have
`lim_(x->0^-)f(x)=lim_(x->0^+)f(x)lim_(x->0)f(x)`
`lim_(x->0^-)f(x)=lim_(x->0^-)(absx)/x=-x/x=-1` since `absx`=`-x , x<0`
`lim_(x->0^+) f(x)=lim_(x->0^+)(absx)/x=x/x=1` since `absx`=`x, x>0`
Thus `lim_(x->0^-)f(x)!=lim_(x->0^+)f(x)`
Hence, `lim_(x->0)f(x)` does not exist.
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|25 Videos
  • LIMITS AND DERIVATIVES

    NCERT ENGLISH|Exercise MISCELLANEOUS EXERCISE|30 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT ENGLISH|Exercise EXERCISE 12.1|4 Videos
  • LINEAR INEQUALITIES

    NCERT ENGLISH|Exercise EXERCISE 6.2|10 Videos

Similar Questions

Explore conceptually related problems

Find (lim)_(x->1)f(x),""w h e r e""f(x)=[x^2-1, xlt=1-x^2-1, x >1

Evaluate: lim_(x->0)(e-(1+x)^(1/x))/x

Find lim_(X to 0) f(x) where f(x) = {{:(x, x!=0),(5,x=0):}}

Find lim_(xrarr0) f(x) where f(x)={{:((x)/(|x|),xne0),(0,x=0):}

Evaluate : lim_(xto0) (e^(x) -e^(-x))/x

Evaluate : lim_(x to 0) (e^(x) -e^(x))/x

If (lim)_(x->0)k x\ cos e c\ x=(lim)_(x->0)x\ cos e c\ k x Find k

Find lim_(x to 0) f(x) , where f(x) = {{:(x -1,x lt 0),(0,x = 0),(x =1,x gt 0):}

Find lim_(xrarr0)f(x)a n d(lim)_(x->1)f(x),""""w h e r e""""f(x)=[2x+3, xlt=0 3(x+1), x >0

Evaluate the following integral: int_0^9f(x)dx ,\ w h e r e\ f(x)=sinx,\ 0lt=xlt=pi//2 w h e r e\ f(x)= 1 ,pi/2lt=xlt=3 w h e r e\ f(x)=e^(x-3),\ 3lt=xlt=9