Home
Class 11
MATHS
(lim)(x->0)(a x+b)/(c x+1)...

`(lim)_(x->0)(a x+b)/(c x+1)`

Text Solution

AI Generated Solution

To find the limit of the expression \(\lim_{x \to 0} \frac{ax + b}{cx + 1}\), we can follow these steps: ### Step 1: Substitute \(x = 0\) into the expression We start by substituting \(x = 0\) into the expression to evaluate the limit directly. \[ \frac{a(0) + b}{c(0) + 1} = \frac{0 + b}{0 + 1} = \frac{b}{1} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|25 Videos
  • LIMITS AND DERIVATIVES

    NCERT ENGLISH|Exercise MISCELLANEOUS EXERCISE|30 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT ENGLISH|Exercise EXERCISE 12.1|4 Videos
  • LINEAR INEQUALITIES

    NCERT ENGLISH|Exercise EXERCISE 6.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(x->0)(a x+b)/(c x+d),\ d!=0

(lim)_(x->0)(sina x)/(b x)

(lim)_(x->0)(sina x+b x)/(a x+sinb x)a ,b ,a+b!=0

lim_(x->0)(1+(asinb x)/(cosx))^(1/x), where a,b are non zero constants is equal to :

(lim)_(x->0)(|sin x|)/x is a. 1 b . -1 c. 0 d. none of these

(lim)_(x->0)x/(tanx) is a. 1 b . 0 c. 4 d. not defined

Evaluate the following limit: (lim)_(x->0)(a^(m x)-1)/(b^(n x)-1),\ n!=0

Suppose |[f'(x),f(x)],[f''(x),f'(x)]|=0 is continuously differentiable function with f^(prime)(x)!=0 and satisfies f(0)=1 and f'(0)=2 then (lim)_(x->0)(f(x)-1)/x is 1//2 b. 1 c. 2 d. 0

if lim_(x->0)(1+a x)^(b / x)=e^2, where a and b are natural numbers, then

If f(x)={xsin(1/x) ,\ x!=0, then (lim)_(x->0)f(x) equals a. 1 b . 0 c. -1 d. none of these