Home
Class 11
MATHS
(lim)(x->0)xsecx...

`(lim)_(x->0)xsecx`

Text Solution

AI Generated Solution

To evaluate the limit \( \lim_{x \to 0} x \sec x \), we can follow these steps: ### Step 1: Rewrite secant in terms of cosine We know that the secant function is defined as: \[ \sec x = \frac{1}{\cos x} \] Thus, we can rewrite the limit as: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|25 Videos
  • LIMITS AND DERIVATIVES

    NCERT ENGLISH|Exercise MISCELLANEOUS EXERCISE|30 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT ENGLISH|Exercise EXERCISE 12.1|4 Videos
  • LINEAR INEQUALITIES

    NCERT ENGLISH|Exercise EXERCISE 6.2|10 Videos

Similar Questions

Explore conceptually related problems

(lim)_(x->0)(sina x)/(b x)

If (lim)_(x->0)k x\ cos e c\ x=(lim)_(x->0)x\ cos e c\ k x Find k

Evaluate the following limit: (lim)_(x->0)(sinx^0)/(x^0)

Evaluate (i) (lim)_(x->0)(sin4x)/(sin2x) (ii) (lim)_(x->0)(tanx)/x

(lim)_(x->0)(cosx)/(pi-x)

(lim)_(x->0)(a x+xcosx)/(bsinx)

Write the value of (lim)_(x->0)(sinx^0)/x

Write the value of (lim)_(x->0^+)[x]

Write the value of (lim)_(x->0^-)[x]

lim_(y->0)((x+y)sec(x+y)-xsecx)/y is equal to (a) secx(xtanx+1) (b) xtanx+secx (c) xsecx+tanx (d) none of these