Home
Class 11
MATHS
The sum and sum of squares corresponding...

The sum and sum of squares corresponding to length `x` (in cm) and weight `y` (in gm) of 50 plant products are given below : `sum_(i=1)^(50)x_i=212 ,sum_(i=1)^(50)xi2=902. 8 ,sum_(i=1)^(50)y_i=261 ,sum_(i=1)^n y i2=1457. 6` Which is more varying the length or weight?

Text Solution

Verified by Experts

`sum_(i=1)^(50)x_i=212 ,sum_(i=1)^(50)x_i^2=902. 8 `
Here, `N=50`
Mean `barx_i=(sum_(i=1)^(50)x_i)/N`
`=212/50`
...
Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    NCERT ENGLISH|Exercise EXERCISE 15.1|12 Videos
  • STATISTICS

    NCERT ENGLISH|Exercise EXERCISE 15.2|10 Videos
  • STATISTICS

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|18 Videos
  • SETS

    NCERT ENGLISH|Exercise EXERCISE 1.5|7 Videos
  • STRAIGHT LINES

    NCERT ENGLISH|Exercise EXERCISE 10.4|4 Videos

Similar Questions

Explore conceptually related problems

The sum and sum of squares corresponding to length x (in cm) and weight y (in gm) of 50 plant products are given below : sum_(i=1)^(50)x_i=212 ,sum_(i=1)^(50)x_i^2=902. 8 ,sum_(i=1)^(50)y_i=261 ,sum_(i=1)^50 y_ i^2=1457. 6 Which is more varying, the length or weight?

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to

Find sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n (ijk)

Find the sum sum_(j=1)^(10)sum_(i=1)^(10)ixx2^(j)

If n= 10, sum_(i=1)^(10) x_(i) = 60 and sum_(i=1)^(10) x_(i)^(2) = 1000 then find s.d.

Find the values of n and bar X in each of the following cases: (i) sum_(i=1)^n (x_1-12)=-10 and sum_(i=1)^n (x_1-3)=62 (ii) sum_(i=1)^n (x_1-10)=30 and sum_(i=1)^n (x_1-6)=150

If sum_(i=1)^200 sin^-1 x_i=100pi, then sum _(i=1)^200 x_i^2 is equal to

If for a sample size of 10 , sum_(i=1)^(10)(x_i-5)^2=350 and sum_(i=1)^(10)(x_i-6)=20 , then the variance is

If sum_(r=1)^n r=55 , F i nd sum_(r=1)^n r^3dot

If sum_(r=1)^nt_r=sum_(k=1)^nsum_(j=1)^ksum_(i=1)^j2 , then sum_(r=1)^n1/t_r=