Home
Class 12
MATHS
Let f: X -> Ybe an invertible function....

Let `f: X -> Y`be an invertible function. Show that the inverse of `f^(-1)`is f, i.e., `(f^(-1))^(-1)= f`.

Text Solution

AI Generated Solution

To show that the inverse of \( f^{-1} \) is \( f \), we will follow these steps: ### Step 1: Define the Function Let \( f: X \to Y \) be an invertible function. For this example, we will define \( f(x) = 2x \) where \( X = \{1, 2, 3\} \) and \( Y = \{2, 4, 6\} \). ### Step 2: Find the Inverse Function To find the inverse function \( f^{-1} \), we start with the equation: \[ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f: X->Y be an invertible function. Show that f has unique inverse. (Hint: suppose g_1( and g)_2 are two inverses of f . Then for all y in Y ,fog_1(y)=I_Y(y)=fog_2(y) . Use one oneness of f ).

Let f : R rarr R : f(x) = (2x-3)/(4) be an invertible function. Find f^(-1) .

Let f (x) be invertible function and let f ^(-1) (x) be is inverse. Let equation f (f ^(-1) (x)) =f ^(-1)(x) has two real roots alpha and beta (with in domain of f(x)), then :

Let f be an invertible real function. Write (f^(-1)\ of)(1)+(f^(-1)\ of)(2)++(f^(-1)\ of)(100)dot

If f(x) is an invertible function and g(x)=2f(x)+5, then the value of g^(-1)(x)i s (a) 2f^(-1)(x)-5 (b) 1/(2f^(-1)(x)+5) 1/2f^(-1)(x)+5 (d) f^(-1)((x-5)/2)

If f(x) is an invertible function and g(x)=2f(x)+5, then the value of g^(-1)(x)i s (a) 2f^(-1)(x)-5 (b) 1/(2f^(-1)(x)+5) 1/2f^(-1)(x)+5 (d) f^(-1)((x-5)/2)

Let f: R->R be defined by f(x)=3x-7 . Show that f is invertible and hence find f^(-1) .

If 'f' is an invertible function, defined as f(x)=(3x-4)/5, write f^(-1)(x)

Let f: N -> S be a function defined as f(x)=9x^2+6x-5 . Show that f:N -> S, where S is the range of f , is invertible. Find the inverse of f and hence f^(-1)(43) and f^(-1)(163)

Consider f\ : R_+vec[4,oo) given by f(x)=x^2+4 . Show that f is invertible with the inverse f^(-1) of f given by f^(-1)(y)=sqrt(y-4),\ where R_+ is the set of all non-negative real numbers.