Home
Class 12
MATHS
Prove that: 3sin^(-1)x=sin^(-1)(3x-4x^3)...

Prove that: `3sin^(-1)x=sin^(-1)(3x-4x^3), x in [-1/2,1/2]`

Text Solution

AI Generated Solution

To prove that \( 3\sin^{-1}x = \sin^{-1}(3x - 4x^3) \) for \( x \) in the interval \([-1/2, 1/2]\), we will follow these steps: ### Step 1: Let \( \theta = \sin^{-1}(x) \) This means that: \[ x = \sin(\theta) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 3cos^(-1)x=cos^(-1)(4x^3-3x), x in [1/2,1]

int(sin^(-1)(3x-4x^3)dx)

Solve sin^(-1)x-cos^(-1)x=sin^(-1)(3x-2)

Solve sin^(-1)x-cos^(-1)x=sin^(-1)(3x-2)

Solve : sin^(-1)x + sin^(-1) 2x = (pi)/(3)

Differentiate sin^(-1)(3x-4x^3) with respect to x , if -1/2

Solve : sin^(-1)( x) + sin^(-1)( 2x) = sin^(-1)(sqrt(3)/2) .

If sin^(- 1)(x)+sin^(- 1)(2x)=pi/3 then x=

f(x) = sin^(-1)x+x^(2)-3x + (x^(3))/(3),x in[0,1]

Solve sin^(-1) x- cos^(-1) x = sin^(-1) (3x -2)