Home
Class 12
MATHS
Find the value of: tan(1/2 [sin^(-1)((2x...

Find the value of: `tan(1/2 [sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))]),|x|<1, y >0`and `x y < 1`

Text Solution

AI Generated Solution

To find the value of \[ \tan\left(\frac{1}{2} \left[\sin^{-1}\left(\frac{2x}{1+x^2}\right) + \cos^{-1}\left(\frac{1-y^2}{1+y^2}\right)\right]\right) \] given the conditions \(|x| < 1\), \(y > 0\), and \(xy < 1\), we can follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT ENGLISH|Exercise MISCELLANEOUS EXERCISE|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT ENGLISH|Exercise Exercise 2.1|14 Videos
  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.4|25 Videos
  • LINEAR PROGRAMMING

    NCERT ENGLISH|Exercise EXERCISE 12.2|11 Videos

Similar Questions

Explore conceptually related problems

Find the value of: tan1/2[sin^(-1)(2x)/(1+x^2)+cos^(-1)(1-y^2)/(1+y^2)],|x| 0 and x y" "<" "1

Find the value of tan { 1/2 sin^(-1) ((2x)/(1+x^(2))) + 1/2 cos^(-1) ((1-y^(2))/(1+ y^(2)))}

Find the value of the following: tan [1/2[sin^(-1) ((2x)/(1+x^2))+cos^(-1) ((1-y^2)/(1+y^2))]], |x| 0 and x y < 1 .

If y=sin^(-1)((1-x^2)/(1+x^2))+cos^(-1)((1-x^2)/(1+x^2)) , find (dy)/(dx) .

Find the domain of: y=sin^(-1)((x^(2))/(1+x^(2)))

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))

If x in [-1,0], then find the value of cos^(-1)(2x^2-1)-2sin^(-1)x

Find the value of x and y (1)/(2x)+(1)/(3y)=2 (1)/(3x)+(1)/(2y)=(13)/(6)

If x in [-1, 0) then find the value of cos^(-1) (2x^(2) -1) -2 sin^(-1) x

If tan x =1(1)/3 , find the value of : 4 sin^2x -3 cos^2x +2