Home
Class 12
MATHS
tan^(-1)sqrt(3)-cot^(-1)(-sqrt(3))is equ...

`tan^(-1)sqrt(3)-cot^(-1)(-sqrt(3))`is equal to
(A) `pi` (B) `-pi/2` (C) 0 (D) `2sqrt(3)`

Text Solution

AI Generated Solution

To solve the expression \( \tan^{-1}(\sqrt{3}) - \cot^{-1}(-\sqrt{3}) \), we will follow these steps: ### Step 1: Rewrite the cotangent inverse We know that: \[ \cot^{-1}(-x) = \pi - \cot^{-1}(x) \] Thus, we can rewrite \( \cot^{-1}(-\sqrt{3}) \) as: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(A) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(a) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A) pi/3 (B) pi/4 (C) pi/2 (D) pi/6

The value of int_0^(sin^2theta) sin^-1 sqrt(phi) d phi + int_0^(cos^2theta) cos^-1 sqrt(phi) d phi is equal to (A) pi (B) pi/2 (C) pi/3 (D) pi/4

cos^(-1)("cos"(2cot^(-1)(sqrt(2)-1))) is equal to sqrt(2)-1 (b) pi/4 (c) (3pi)/4 (d) non eoft h e s e

sum_(n=1)^oo sin^-1( (sqrt(n)-(sqrt(n-1)))/(sqrt((n)(n+1)) )= (A) pi/4 (B) pi/2 (C) - pi/3 (D) pi/3

The value of sin^(-1)(3/(sqrt(73)))+cos^(-1)((11)/(sqrt(146)))+cot^(-1)sqrt(3) is (A) (5pi)/(12) (B) (17pi)/(12) (C) (7pi)/(12) (D) None of these

If 3tan^(-1)(1/(2+sqrt(3)))-tan^(-1)1/x=tan^(-1)1/3, then x is equal to 1 (b) 2 (c) 3 (d) sqrt(2)

sum_(r=1)^nsin^(-1)((sqrt(r)-sqrt(r-1))/(sqrt(r(r+1)))) is equal to (a) tan^(-1)(sqrt(n))-pi/4 (b) tan^(-1)(sqrt(n+1))-pi/4 (c) tan^(-1)(sqrt(n)) (d) tan^(-1)(sqrt(n)+1)

sin^-1 (-1/2)+tan^-1 (sqrt(3))= (A) -pi/6 (B) pi/3 (C) pi/6 (D) none of these