Home
Class 12
MATHS
Prove that: 3cos^(-1)x=cos^(-1)(4x^3-3x)...

Prove that: `3cos^(-1)x=cos^(-1)(4x^3-3x), x in [1/2,1]`

Text Solution

AI Generated Solution

To prove that \( 3 \cos^{-1} x = \cos^{-1} (4x^3 - 3x) \) for \( x \in \left[\frac{1}{2}, 1\right] \), we can follow these steps: ### Step 1: Let \( x = \cos \theta \) Assume \( x = \cos \theta \). Then, we can express \( \cos^{-1} x \) as \( \theta \): \[ \cos^{-1} x = \theta \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 3sin^(-1)x=sin^(-1)(3x-4x^3), x in [-1/2,1/2]

Prove that: 3sin^(-1)x=sin^(-1)(3x-4x^3), x in [-1/2,1/2]

If f(x)=cos^(-1)(4x^(3)-3x), x in [-1,1] , then

Prove : cos3x=4cos^(3)x-3cosx

The simplest form of (cos^(-1)x +cos^(-1){x/2+1/2sqrt(3-3x^2)}),AA x in [1/2,1] is A. Then the value of tanA is

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)

Prove that : cos^(-1) x = 2 cos^(-1) sqrt((1+x)/(2)) (ii) Prove that : tan^(-1)((cosx + sin x)/(cosx - sin x)) = (pi)/(4)+ x

If x satisfies the cubic equation ax^(3)+bx^(2)+cx+d=0 such that cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)=pi , then find the value of (b+c)-(a+d) .

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1