Home
Class 12
MATHS
Prove that:(9pi)/8-9/4sin^(-1)(1/3)=9/4s...

Prove that:`(9pi)/8-9/4sin^(-1)(1/3)=9/4sin^(-1)((2sqrt(2))/3)`

Text Solution

AI Generated Solution

To prove the equation: \[ \frac{9\pi}{8} - \frac{9}{4} \sin^{-1}\left(\frac{1}{3}\right) = \frac{9}{4} \sin^{-1}\left(\frac{2\sqrt{2}}{3}\right) \] we will start by simplifying the left-hand side (LHS). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: (9pi)/8-9/4sin^(-1)(1/3)=9/4sin^(-1)((2\ sqrt(2))/3)

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

Prove: tan^(-1)(1/4)+tan^(-1)(2/9)=sin^(-1)(1/sqrt(5))

sin^(-1)(sin((9pi)/4))

A value of for which (2+3isintheta)/(1-2isintheta) purely imaginary, is : (1) pi/3 (2) pi/6 (3) sin^(-1)((sqrt(3))/4) (4) sin^(-1)(1/(sqrt(3)))

Prove that: sin^2(pi/8+A/2)-sin^2(pi/8-A/2)=1/sqrt(2)sinA

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)

Prove that: sin^2(A/2+pi/8) - sin^2(A/2-pi/8)= 1/sqrt(2)sinA

Prove that: sin(pi/14)sin((3pi)/14)sin((5pi)/14)sin((7pi)/14)sin((9pi)/14)sin((11pi)/14)sin((13pi)/14)=1/(64)

Prove that : tan^(-1).(1)/(4)+tan^(-1).(2)/(9)=(1)/(2)sin^(-1).(4)/(5)