Home
Class 12
MATHS
sin^(-1)(1-x)-2sin^(-1)x=pi/2, then x is...

`sin^(-1)(1-x)-2sin^(-1)x=pi/2`, then `x` is equal to (A) `0,1/2` (B) `1,1/2` (C) 0 (D) `1/2`

Text Solution

AI Generated Solution

To solve the equation \( \sin^{-1}(1-x) - 2\sin^{-1}(x) = \frac{\pi}{2} \), we can follow these steps: ### Step 1: Rearranging the Equation We start by isolating one of the terms: \[ \sin^{-1}(1-x) = \frac{\pi}{2} + 2\sin^{-1}(x) \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT ENGLISH|Exercise Exercise 2.1|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT ENGLISH|Exercise Solved Examples|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT ENGLISH|Exercise Solved Examples|13 Videos
  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.4|25 Videos
  • LINEAR PROGRAMMING

    NCERT ENGLISH|Exercise EXERCISE 12.2|11 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)(1-x)-2 sin^(-1)x=(pi)/(2) , then x is equal to

sin(pi/3-sin^(-1)(-1/2)) is equal to (A) 1/2 (B) 1/3 (C) 1/4 (D) 1

If A=1/pi[sin^(-1)(pix)tan^(-1)(x/pi)sin^(-1)(x/pi)cot^(-1)(pix)] and B=1/pi[-cot^(-1)(pix)tan^(-1)(x/pi)sin^(-1)(x/pi)-tan^(-1)(pix)] , then A-B is equal to I (b) 0 (c) 2I (d) 1/2I

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to

If f(x)={(sin(cosx)-cosx)/((pi-2x)^2)\ \ \ ,\ \ \ x!=pi/2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \k\ \ \ \ ,\x=pi/2 is continuous at x=pi/2 , then k is equal to (a) 0 (b) 1/2 (c) 1 (d) -1

If sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^4+y^4)/(x^2-x^2y^2+y^2) is equal to 1 (b) 2 (c) 1/2 (d) none of these

If sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^4+y^4)/(x^2-x^2y^2+y^2) is equal to 1 (b) 2 (c) 1/2 (d) none of these

If A=1/pi[[sin^(-1)(pix),tan^(-1)(x/pi)], [sin^(-1)(x/pi),cot^(-1)(pix)]] and B=1/pi[[-cos^(-1)(pix),tan^(-1)(x/pi)],[sin^(-1)(x/pi),-tan^(-1)(pix)]] , then A-B is equal to I (b) 0 (c) 2I (d) 1/2I

If sin^(-1)((2a)/(1+a^2))+sin^(-1)((2b)/(1+b^2))=2tan^(-1)x , then x is equal to [a , b , in (0,1)] (a) (a-b)/(1+a b) (b) b/(1+a b) (c) b/(1+a b) (d) (a+b)/(1-a b)