Home
Class 12
MATHS
Show that(i) sin^(-1)(2xsqrt(1-x^2))=2si...

Show that(i) `sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2))`(ii) `sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1`

Text Solution

AI Generated Solution

To solve the given problem, we will break it down into two parts as stated in the question. ### Part (i): Show that \( \sin^{-1}(2x\sqrt{1-x^2}) = 2\sin^{-1}x \) for \( -\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}} \). **Step 1:** Start with the left-hand side (LHS): \[ \text{LHS} = \sin^{-1}(2x\sqrt{1-x^2}) \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT ENGLISH|Exercise Exercise 2.1|14 Videos
  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.4|25 Videos
  • LINEAR PROGRAMMING

    NCERT ENGLISH|Exercise EXERCISE 12.2|11 Videos

Similar Questions

Explore conceptually related problems

Show that sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x

Differentiate each of the following functions with respect to x : (i) sin^(-1)(2xsqrt(1-x^2)),-1/(sqrt(2))ltxlt1/(sqrt(2)) (ii) cos^(-1)(2x(sqrt(1-x^2)),-1/sqrt(2)ltxlt1/sqrt2

y = sin ^(-1)(2xsqrt(1 - x^(2))),-(1)/sqrt(2) lt x lt (1)/sqrt(2)

Differentiate sin^(-1)(2xsqrt(1-x^2)),

Prove that 2cos^(-1)x=sin^(-1)(2xsqrt(1-x^2))

Differentiate cos^(-1)(2xsqrt(1-x^2)) -1/(sqrt(2))

Differentiate cos^(-1){2xsqrt(1-x^2)},1/(sqrt(2))

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=pi/4-1/2cos^(-1)x,-1/(sqrt(2))lt=xlt=1

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))=pi/4-1/2cos^(-1),-1/(sqrt(2))lt=xlt=1

Prove that tan^(-1){x/(a+sqrt(a^2-x^2))}=1/2sin^(-1)x/a ,-a lt x lt a