Home
Class 12
MATHS
Prove that tan^(-1)x+tan^(-1)(2x)/(1-x^2...

Prove that `tan^(-1)x+tan^(-1)(2x)/(1-x^2)=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/(sqrt(3))`

Text Solution

Verified by Experts

Let, `tan^-1 x =y `........(1)
`=> x = tan y`
`tan^-1 ((2x)/(1-x^2)) = tan^(-1) ((2tany)/(1-tan^2y))`
`= tan^-1 (tan2y)= 2y` ......(2)
...
Promotional Banner

Similar Questions

Explore conceptually related problems

show that tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/sqrt3

Prove the following: tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2))

Prove the following: tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2))

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

tan^(- 1)x+tan^(- 1)\ (2x)/(1-x^2)=pi+tan^(- 1)\ (3x-x^3)/(1-3x^2),(x >0) is true if

Solve : tan^(-1) x + tan^(-1)( (2x)/(1-x^2)) = pi/3

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .