Home
Class 12
MATHS
Write cot^(-1)(1/(sqrt(x^2-1))),|x|>1in ...

Write `cot^(-1)(1/(sqrt(x^2-1))),|x|>1`in the simplest form.

Text Solution

AI Generated Solution

To simplify the expression \( \cot^{-1}\left(\frac{1}{\sqrt{x^2-1}}\right) \) for \( |x| > 1 \), we can follow these steps: ### Step 1: Substitute \( x \) with \( \sec \theta \) Let \( x = \sec \theta \). Since \( |x| > 1 \), \( \theta \) will be in the range where \( \sec \theta \) is defined (i.e., \( \theta \) is not equal to \( \frac{\pi}{2} + n\pi \) for any integer \( n \)). ### Step 2: Simplify \( \sqrt{x^2 - 1} \) Using the identity \( \sec^2 \theta - 1 = \tan^2 \theta \), we have: \[ ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT ENGLISH|Exercise Exercise 2.1|14 Videos
  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.4|25 Videos
  • LINEAR PROGRAMMING

    NCERT ENGLISH|Exercise EXERCISE 12.2|11 Videos

Similar Questions

Explore conceptually related problems

cot^(-1)sqrt(x)

sqrt(cot^(-1)sqrt(x))

Write the following function in the simplest form: tan^(-1)(1/(sqrt(x^2-1))),|x|>1

Simplify : cot^(-1) ((1)/(sqrt(x^(2) -1))) for x lt -1

Let f(x) = cos(tan^(-1) ( sin ( cot^(-1)x))) . The simplest form of f(x) can be written as ((x^(2) +A)/(x^(2) +B))^(1//2) . Then the value of (A + B) is ………………

Write the simplest form : tan^(-1)(1/sqrt(x^2 -1)) , |x|gt1

Find the domain of: y=cot^(-1)(sqrt(x^(2)-1))

The expression (1)/(sqrt(x+2sqrt(x-1)))+(1)/(sqrt(x-2sqrt(x-1))) simplifies to:

Find cot^(-1) ( sqrt((1-x^(2))/(1 + x^(2)))) in terms of cos

Express sin^(-1)((sin x+ cos x)/(sqrt2)) , where -(pi)/(4) lt x lt (pi)/(4) , in the simplest form.