Home
Class 12
MATHS
Express tan^(-1)((cosx)/(1-sinx)),-(pi)/...

Express `tan^(-1)((cosx)/(1-sinx))`,`-(pi)/2ltxlt(pi)/2` in the simplest form.

Text Solution

AI Generated Solution

To express \( \tan^{-1}\left(\frac{\cos x}{1 - \sin x}\right) \) in its simplest form, we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ y = \tan^{-1}\left(\frac{\cos x}{1 - \sin x}\right) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)((cosx-sinx)/(cosx+sinx))=pi/4-x

Express sin^(-1)((sin x+ cos x)/(sqrt2)) , where -(pi)/(4) lt x lt (pi)/(4) , in the simplest form.

Differentiate tan^(-1){sqrt((1+sinx)/(1-sinx))},\ -pi/2

Differentiate tan^(-1){sqrt((1-cosx)/(1+cosx))},\ -pi ltx lt pi with respect to x :

Evaluate int tan^(-1)(secx+tanx)dx,-pi//2ltxlt pi//2

Prove that tan^-1((cosx)/(1+sinx))=pi/4-x/2,\ x in (-pi/2,pi/2)

Differentiate tan^(-1){(1-cosx)/(sinx)},\ -pi

int_0^(pi/2) cosx/(1+sinx)dx

Differentiate tan^(-1){(cosx)/(1+sinx)},\ 0 le x le pi

Prove that tan^(-1)(sqrt((1-cosx)/(1+cosx))=x/2, x lt pi .