Home
Class 12
MATHS
Show that tan^(-1)1/2+tan^(-1)2/(11)=tan...

Show that `tan^(-1)1/2+tan^(-1)2/(11)=tan^(-1)3/4`

Text Solution

AI Generated Solution

To prove that \( \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{2}{11}\right) = \tan^{-1}\left(\frac{3}{4}\right) \), we will use the formula for the sum of inverse tangents: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x + y}{1 - xy}\right) \] ### Step 1: Identify \( x \) and \( y \) Let \( x = \frac{1}{2} \) and \( y = \frac{2}{11} \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that tan^(-1) (1/2) +tan^(-1) (1/8) = tan^(-1) (3/4) - tan^(-1)(1/18)

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

show that tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/sqrt3

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot

Prove that: tan^(-1)(1/7)+tan^(-1)(1/(13))=tan^(-1)(2/9) tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4 tan^(-1)(3/4)+tan^(-1)(3/5)-tan^(-1)(8/19)=pi/4

Prove that tan^(-1)1+tan^(-1)2+tan^(-1)3 =pi

Prove that: tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=pi/4

Prove that : tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=pi/4

Prove that: tan^(-1)1+tan^(-1)2+tan^(-1)3=pi