Home
Class 12
MATHS
Find the value of tan^(-1)(tan((3pi)/4))...

Find the value of `tan^(-1)(tan((3pi)/4))`

Text Solution

AI Generated Solution

To find the value of \( \tan^{-1}(\tan(\frac{3\pi}{4})) \), we can follow these steps: ### Step 1: Identify the angle We start with the angle \( \frac{3\pi}{4} \). This angle is in the second quadrant. ### Step 2: Determine the range of \( \tan^{-1} \) The function \( \tan^{-1}(x) \) is defined for \( x \) in the range of \( -\frac{\pi}{2} < y < \frac{\pi}{2} \). This means that \( \tan^{-1}(\tan(x)) = x \) only when \( x \) is within this interval. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of tan^(-1)(tan'(2pi)/(3)) .

Find the value of : tan^(-1){tan(-(7pi)/8)}

Find the value of tan^(-1) (-tan.(13pi)/(8)) + cot^(-1) (-cot((9pi)/(8)))

Write the value of tan^(-1){tan((15pi)/4)}

Write the value of cos^(-1)(tan((3pi)/4)) .

Find the value of tan^(-1)(-1/(sqrt(3)))+cot^(-1)((1)/(sqrt(3))) + tan^(-1)[sin((-pi)/(2))] .

Find the value of tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Find the value of 4tan^(-1)1/5-tan^(-1)1/(70)+tan^(-1)1/(99)

find the value of tan^(-1){cot(-1/4)}

Find the value of tan pi/8 .