Home
Class 12
MATHS
Prove that:sin^(-1)(8/17)+sin^(-1)(3/5)=...

Prove that:`sin^(-1)(8/17)+sin^(-1)(3/5)=tan^(-1)(77/36)`

Text Solution

AI Generated Solution

To prove that \( \sin^{-1}\left(\frac{8}{17}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{77}{36}\right) \), we will convert the sine inverse terms into tangent inverse terms and then use the tangent addition formula. ### Step 1: Convert \( \sin^{-1}\left(\frac{8}{17}\right) \) to \( \tan^{-1} \) Let \( \theta = \sin^{-1}\left(\frac{8}{17}\right) \). From the definition of sine, we have: \[ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : sin^(-1)(8/(17))+sin^(-1)(3/5)=sin^(-1)((77)/(85))=tan^(-1)((77)/(36))

Prove that sin^(- 1)(8/17)+sin^(- 1)(3/5)=sin^(- 1)(77/85)

Prove that sin^(-1)(8/(17))+sin^(-1)(3/5)=cos^(-1)((36)/(85))

Prove that sin^(-1)(8/(17))+sin^(-1)(3/5)=cos^(-1)((36)/(85))

sin^(-1)(3/5)+tan^(-1)(1/7)=

Prove that: sin^(-1)(3/5)=tan^(-1)(3/4)

Prove that : sin^(-1)(5/13) +cos ^(−1)(3/5)=tan (−1)(63/16) ​

Prove that: sin^(-1)((12)/(13))+cos^(-1)(4/5)+tan^(-1)((63)/(16))=pi

Prove that: sin^(-1) (12/13)+cos^(-1) (4/5)+tan^(-1) (63/16)=pi

Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2