Home
Class 12
MATHS
Find the value of: cos^(-1)(1/2)+2sin^(-...

Find the value of: `cos^(-1)(1/2)+2sin^(-1)(1/2)`

Text Solution

AI Generated Solution

To solve the expression \( \cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) \), we will follow these steps: ### Step 1: Evaluate \( \cos^{-1}\left(\frac{1}{2}\right) \) We know that \( \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \). Therefore, \[ \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}. \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Write the value of cos^(-1)(-1/2)+2sin^(-1)(1/2)

Write the value of cos^(-1)(1/2)+2\ sin^(-1)(1/2)

Find the value of: tan^(-1)[2cos(2sin^(-1)(1/2)]

Write the principal value of cos^(-1)(1/2)-2sin^(-1)(-1/2)

If x in [-1,0], then find the value of cos^(-1)(2x^2-1)-2sin^(-1)x

The value of 2cos^(-1)(-1/2)-2 sin^(-1)(-1/2)-cos^(-1)(-1) is

Find the value of: tan^(-1)[2cos(2sin^(-1)1/2)]

Find the value of : cos[(pi)/3-"sin"^(-1)(-1/2)]

Find the value of: tan^(-1)(1)+cos^(-1)(-1/2)+sin^(-1)(-1/2)

If x in [-1, 0) then find the value of cos^(-1) (2x^(2) -1) -2 sin^(-1) x