Home
Class 12
MATHS
Solve tan^(-1)2x+tan^(-1)3x=pi/4....

Solve `tan^(-1)2x+tan^(-1)3x=pi/4`.

Text Solution

AI Generated Solution

To solve the equation \( \tan^{-1}(2x) + \tan^{-1}(3x) = \frac{\pi}{4} \), we can use the formula for the sum of inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] ### Step 1: Apply the formula Let \( a = 2x \) and \( b = 3x \). According to the formula, we have: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation tan^(-1)2x+tan^(-1)3x=pi/4

Solve the equation tan^(-1) 2x + tan^(-1) 3x = pi//4

Solve: 5tan^(-1)x+3cot^(-1)x=2pi

Solve the following equations (i) tan^(-1). ( x-1)/(x - 2) = tan ^(-1). ( x+1)/(x + 2) = pi/4 (ii) tan^(-1) 2 xx tan^(-1) 3x = pi/4

The number of solutions of equation tan^(-1)2x+tan^(-1)3x=pi/4 is (a) 2 (b) 3 (c) 1 (d) none of these

Solve for x: tan^(-1)3x+tan^(-1)2x=pi/4

Solve for x: tan^(-1)3x+tan^(-1)2x=pi/4

Solve: tan^(-1)x+2cot^(-1)x=(2pi)/3

Solve : tan^(-1) x + tan^(-1)( (2x)/(1-x^2)) = pi/3

Solve: tan^(- 1) (2+x) + tan^(- 1) (2 -x ) = tan^(-1) 2/3