Home
Class 12
MATHS
Let A be a non-singular square matrix of...

Let A be a non-singular square matrix of order 3 `xx`3. Then |adj A| is equal to
(A) `|A|` (B) `|A|^2`(C) `|A|^3` (D) `3|A|`

Text Solution

AI Generated Solution

To solve the problem, we need to find the value of \(|\text{adj} A|\) for a non-singular square matrix \(A\) of order \(3 \times 3\). ### Step-by-Step Solution: 1. **Understanding the Adjoint and Determinant Relationship**: - The adjoint (or adjugate) of a matrix \(A\), denoted as \(\text{adj} A\), is related to the determinant of \(A\). For any square matrix \(A\) of order \(n\), the determinant of the adjoint of \(A\) can be expressed as: \[ |\text{adj} A| = |A|^{n-1} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT ENGLISH|Exercise EXERCISE 5.7|17 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT ENGLISH|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

Let A a non singular square matrix of order 3xx3 . Then |adjA| is equal to

Let A be a non-singular square matrix of order n. Then; |adjA| =

Let A be a square matrix of order 3xx3 , then |k A| is equal to (A) k|A| (B) k^2|A| (C) K^3|A| (D) 3k |A|

Let A be a square matrix of order 3xx3 , then |k A| is equal to(A) k|A| (B) k^2|A| (C) k^3|A| (D) 3k |A|

If A is a matrix of order 3xx3 , then |3A| is equal to………

Let A be an orthogonal non-singular matrix of order n, then |A-I_n| is equal to :

If A is a non singular square matrix then |adj.A| is equal to (A) |A| (B) |A|^(n-2) (C) |A|^(n-1) (D) |A|^n

If A is a non singular matrix of order 3 then |adj(adjA)| equals (A) |A|^4 (B) |A|^6 (C) |A|^3 (D) none of these

If A is a non singular square matrix 3 then |adj(A^3)| equals (A) |A|^8 (B) |A|^6 (C) |A|^9 (D) |A|^12

Let A be a square matrix of order 3 times 3 , then abs(kA) is equal to

NCERT ENGLISH-DETERMINANTS-All Questions
  1. Show that pointsA (a , b + c), B (b , c + a), C (c , a + b)are collin...

    Text Solution

    |

  2. If A=|[3, 2], [7, 5]| and B=|[6 ,7], [8, 9]| , verify that (A B)^(-1)=...

    Text Solution

    |

  3. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  4. If A=[2-1 1-1 2-1 1-1 2] . Verify that A^3-6A^2+9A-4I=O and hence find...

    Text Solution

    |

  5. Let A=[[1,sintheta,1],[-sintheta,1,sintheta],[-1,-sintheta,1]], where ...

    Text Solution

    |

  6. If x, y, z are non-zero real numbers, then the inverse of matrix A=[(...

    Text Solution

    |

  7. If a, b, c, are in A.P, then the determinant |(x+2,x+3,x+2a),( x+3,x+4...

    Text Solution

    |

  8. Solve the system of equations2/x+3/y+(10)/z=4,4/x-6/y+5/z=1,6/x+9/y-(2...

    Text Solution

    |

  9. Using properties of determinants. Prove that |(sinalpha,cosalpha,cos(a...

    Text Solution

    |

  10. Using properties of determinants. Prove that|[1 ,1+p,1+p+q],[2, 3+2p,4...

    Text Solution

    |

  11. Using properties of determinants. Prove that|[3a,-a+b,-a+c],[-b+a,3b,-...

    Text Solution

    |

  12. Using properties of determinants, prove the following: |xx^2 1+p x...

    Text Solution

    |

  13. Using properties of determinants. Prove that|(alpha,alpha^2,beta+gamma...

    Text Solution

    |

  14. Evaluate |[1,x, y],[1,x+y, y],[1,x,x+y]|

    Text Solution

    |

  15. Write Minors and Cofactors of the elements of following determinants:...

    Text Solution

    |

  16. Using Cofactors of elements of second row, evaluate Delta=|(5, 3, 8),(...

    Text Solution

    |

  17. Write Minors and Cofactors of the elements of following determinants:...

    Text Solution

    |

  18. If Delta=|[a(11),a(12),a(13)],[a(21),a(22),a(23)],[a(31),a(32),a(33)]|...

    Text Solution

    |

  19. Using Cofactors of elements of third column, evaluate Delta=|(1,x, y ...

    Text Solution

    |

  20. Without expanding, prove that Delta=|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0

    Text Solution

    |