Home
Class 12
MATHS
If A=[2-1 1-1 2-1 1-1 2] . Verify that A...

If `A=[2-1 1-1 2-1 1-1 2]` . Verify that `A^3-6A^2+9A-4I=O` and hence find `A^(-1)` .

Text Solution

Verified by Experts

Given, `A=[[2,-1, 1],[-1 ,2,-1],[ 1, -1, 2]]`

Calculating `A^2`

`A^2=A.A`

`A^2=[[2,-1, 1],[-1 ,2,-1],[ 1, -1, 2]][[2,-1, 1],[-1 ,2,-1],[ 1, -1, 2]]`

` " " " " =[[2(2)+(-1)(-1)+1(1),2(-1)+(-1)2+1(-1),2(1)+(-1)(-1)+1(2)],[-1(2)+2(-1)+(-1)(1),-1(-1)+2(2)+(-1)(-1),-1(1)+2(-1)+(-1)2],[1(2)+(-1)(-1)+2(1),1(-1)+(-1)(2)+2(-1),1(1)+(-1)(-1)+2(2)]]`

` " " " " =[[4+1+1,-2-2-1,2+1+2],[-2-2-1,1+4+1,-1-2-2],[2+1+2,-1-2-2,1+1+4]]`

`A^2=[[6,-5,5],[-5,6,-5],[5,-5,6]]`


Calculating `A^3`

`A^3=A^2.A`

`A^3=[[6,-5,5],[-5,6,-5],[5,-5,6]].[[2,-1, 1],[-1 ,2,-1],[ 1, -1, 2]]`

` " " " " =[[6(2)+(-5)(-1)+5(1),6(-1)+(-5)(2)+5(-1),6(1)+(-5)(-1)+5(2)],[-5(2)+6(-1)+(-5)(1),-5(-1)+6(2)+(-5)(-1),-5(1)+6(-1)+(-5)(2)],[5(2)+(-5)(-1)+6(1),5(-1)+(-5)2+6(-1),5(1)+(-5)(-1)+6(2)]]`

` " " " " =[[12+5+5,-6-10-5,6+5+10],[-10-6-5,5+12+5,-5-6-10],[10+5+6,-5-10-6,5+5+12]]`

`A^3=[[22,-21,21],[-21,22,-21],[21,-21,22]]`

Now, putting values in `A^3-6A^2+9A-4I`

` " " " " =[[22,-21,21],[-21,22,-21],[21,-21,22]]-6[[6,-5,5],[-5,6,-5],[5,-5,6]]+9[[2,-1, 1],[-1 ,2,-1],[ 1, -1, 2]]-4[[1,0,0],[0,1,0],[0,0,1]]`

` " " " " =[[22,-21,21],[-21,22,-21],[21,-21,22]]-[[36,-30,30],[-30,36,-30],[30,-30,36]]+[[18,-9, 9],[-9 ,18,-9],[ 9, -9, 18]]-[[4,0,0],[0,4,0],[0,0,4]]`

` " " " " =[[22-36+18+4,-21-(-30)+(-9)+0,21-30+9+0],[-21-(-30)+(-9)60,22-36+18+4,-22-(-30)+(-9)+0],[21-30+9+0,-21-(-30)+(-9)+0,22-36+18+4]]`

` " " " " =[[0,0,0],[0,0,0],[0,0,0]]=0`

Hence Proved


Now calculating `A^(-1)` using

`A^3-6A^2+9A-4I=0`
Post multiplying by `A^(-1)` on both sides

`(A^3-6A^2+9A-4I)A^(-1)=0.A^(-1)`

`A^3.A^(-1)-6A^2.A^(-1)+9A.A^(-1)-4IA^(-1)=0`

`A^2.A.A^(-1)-6A.A.A^(-1)+9A.A^(-1)-4IA^(-1)=0`

`A^2I-6AI+9I-4IA^(-1)=0`

`A^2-6A+9I-4A^(-1)=0`

`4A^(-1)=A^2-6A+9I`

`A^(-1)=1/4(A^2-6A+9I)`

Putting value

`A^(-1)=1/4([[6,-5,5],[-5,6,-5],[5,-5,6]]-6[[2,-1, 1],[-1 ,2,-1],[ 1, -1, 2]]+9[[1,0,0],[0,1,0],[0,0,1]])`

` " " " " =A^(-1)=1/4([[6,-5,5],[-5,6,-5],[5,-5,6]]-[[(6)2,(6)(-1), (6)1],[-1(6) ,(6)2,-1(6)],[ (6)1, -1(6),(6) 2]]+[[(9)1,0,0],[0,(9)1,0],[0,0,(9)1]])`

`A^(-1)=1/4([[6,-5,5],[-5,6,-5],[5,-5,6]]-[[12,-6, 6],[-6 ,12,-6],[ 6, -6, 12]]+[[9,0,0],[0,9,0],[0,0,9]])`

`A^(-1)=1/4[[6-12+9,-5+6+0,5-6+0],[-5+6+0,6-12+9,-5+6+0],[5-6+0,-5+6+0,6-12+9]]`

`A^(-1)=1/4[[3,1,-1],[1,3,1],[-1,1,3]]`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT ENGLISH|Exercise EXERCISE 5.7|17 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT ENGLISH|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

For the matrix A=[1 1 1 1 2-3 2-1 3] . Show that A^3-6A^2+5A+11\ I_3=O . Hence, find A^(-1) .

Show that the matrix A=[[1 ,2, 2],[ 2, 1, 2],[ 2, 2, 1]] satisfies the equation A^2-4A-5I_3=O and hence find A^(-1) .

If A=[(3, 1),(-1 ,2)] , show that A^2-5A+7I=O . Hence, find A^(-1) .

Show that the matrix, A=[[1, 0,-2],[-2,-1, 2],[ 3, 4, 1]] satisfies the equation, A^3-A^2-3A-I_3=O . Hence, find A^(-1) .

Show that A=[(-8, 5),( 2, 4)] satisfies the equation A^2+4A-42 I=O . Hence, find A^(-1) .

If A=[(3, 1),( 1, 2)] , show that A^2-5A+5I=0 . Hence, find A^(-1) .

Show that the matrix A=[[1,2,2],[2,1,2],[2,2,1]] satisfies the equation A^2-4A-5I_3=0 and hence find A^(-1)

If A=[{:(1,-1),(2,3):}] , shown that A^(2)-4A+5I=o . Hence Find A^(-1) .

For the matrix A=[[3, 2],[ 1, 1]] , find the numbers a and b such that A^2+a A+b I=O . Hence, find A^(-1) .

If A=[(2,-3),(3,4)], show the A^2-6A+17I=0. Hence find A^-1

NCERT ENGLISH-DETERMINANTS-All Questions
  1. If A=|[3, 2], [7, 5]| and B=|[6 ,7], [8, 9]| , verify that (A B)^(-1)=...

    Text Solution

    |

  2. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  3. If A=[2-1 1-1 2-1 1-1 2] . Verify that A^3-6A^2+9A-4I=O and hence find...

    Text Solution

    |

  4. Let A=[[1,sintheta,1],[-sintheta,1,sintheta],[-1,-sintheta,1]], where ...

    Text Solution

    |

  5. If x, y, z are non-zero real numbers, then the inverse of matrix A=[(...

    Text Solution

    |

  6. If a, b, c, are in A.P, then the determinant |(x+2,x+3,x+2a),( x+3,x+4...

    Text Solution

    |

  7. Solve the system of equations2/x+3/y+(10)/z=4,4/x-6/y+5/z=1,6/x+9/y-(2...

    Text Solution

    |

  8. Using properties of determinants. Prove that |(sinalpha,cosalpha,cos(a...

    Text Solution

    |

  9. Using properties of determinants. Prove that|[1 ,1+p,1+p+q],[2, 3+2p,4...

    Text Solution

    |

  10. Using properties of determinants. Prove that|[3a,-a+b,-a+c],[-b+a,3b,-...

    Text Solution

    |

  11. Using properties of determinants, prove the following: |xx^2 1+p x...

    Text Solution

    |

  12. Using properties of determinants. Prove that|(alpha,alpha^2,beta+gamma...

    Text Solution

    |

  13. Evaluate |[1,x, y],[1,x+y, y],[1,x,x+y]|

    Text Solution

    |

  14. Write Minors and Cofactors of the elements of following determinants:...

    Text Solution

    |

  15. Using Cofactors of elements of second row, evaluate Delta=|(5, 3, 8),(...

    Text Solution

    |

  16. Write Minors and Cofactors of the elements of following determinants:...

    Text Solution

    |

  17. If Delta=|[a(11),a(12),a(13)],[a(21),a(22),a(23)],[a(31),a(32),a(33)]|...

    Text Solution

    |

  18. Using Cofactors of elements of third column, evaluate Delta=|(1,x, y ...

    Text Solution

    |

  19. Without expanding, prove that Delta=|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0

    Text Solution

    |

  20. EvaluateDelta=|1a b c1b c a1c a b|

    Text Solution

    |