Home
Class 12
MATHS
Using properties of determinants, prove ...

Using properties of determinants, prove the following: `|xx^2 1+p x^3y y^2 1+p y^3z z^2 1+p z^3|=(1+p x y z)(x-y)(y-z)(z-x)`

Text Solution

Verified by Experts

To Prove that`|(x, x^2, 1+p x^3),( y, y^2, 1+p y^3),(z, z^2, 1+p z^3)|=(1+p x y z)(x-y)(y-z)(z-x)`

Solving L.H.S.

`|(x, x^2, 1+p x^3),( y, y^2, 1+p y^3),(z, z^2, 1+p z^3)|`

Expressing elements of `3^(rd)` column as sum of two elements

` " " " " =|(x, x^2, 1),( y, y^2, 1),(z, z^2, 1)|+|(x, x^2, p x^3),( y, y^2, p y^3),(z, z^2, p z^3)|`

Taking p common from `C_3` in `2^(nd)` matrix

` " " " " =|(x, x^2, 1),( y, y^2, 1),(z, z^2, 1)|+p|(x, x^2, x^3),( y, y^2, y^3),(z, z^2, z^3)|`

In matrix `2^(nd)`, Take x common frpm `R_1`, y common from `R_2` and z common from `R_3`

` " " " " =|(x, x^2, 1),( y, y^2, 1),(z, z^2, 1)|+pxyz|(1, x, x^2),( 1 ,y, y^2),(1, z, z^2)|`

In matrix `2^(nd)`, Replace `C_1 leftrightarrow C_2`

` " " " " =|(x, x^2, 1),( y, y^2, 1),(z, z^2, 1)|-pxyz|(x, 1, x^2),( y ,1, y^2),(z, 1, z^2)|`

In matrix `2^(nd)`, Again Replace `C_2 leftrightarrow C_3`

` " " " " =|(x, x^2, 1),( y, y^2, 1),(z, z^2, 1)|-(-1)pxyz|(x, x^2,1 ),( y ,y^2, 1 ),(z, z^2, 1 )|`

` " " " " =|(x, x^2, 1),( y, y^2, 1),(z, z^2, 1)|+pxyz|(x, x^2,1 ),( y ,y^2, 1 ),(z, z^2, 1 )|`

Taking common `|(x, x^2, 1),( y, y^2, 1),(z, z^2, 1)|`

` " " " " =(1+pxyz)|(x, x^2,1 ),( y ,y^2, 1 ),(z, z^2, 1 )|`

Applying `R_1 to R_1-R_2`

` " " " " =(1+pxyz)|(x-y, x^2-y^2,1-1 ),( y ,y^2, 1 ),(z, z^2, 1 )|`

` " " " " =(1+pxyz)|(x-y, (x-y)(x+y),0 ),( y ,y^2, 1 ),(z, z^2, 1 )|`

Taking common `(x-y)` from `R_1`

` " " " " =(1+pxyz)(x-y)|(1,x+y,0 ),( y ,y^2, 1 ),(z, z^2, 1 )|`

Applying `R_2 to R_2-R_3`

` " " " " =(1+pxyz)(x-y)|(1,x+y,0 ),( y-z ,y^2-z^2, 1-1 ),(z, z^2, 1 )|`

` " " " " =(1+pxyz)(x-y)|(1,x+y,0 ),( y-z ,(y-z)(y+z), 0 ),(z, z^2, 1 )|`

Taking common `(y-z)` from `R_2`

` " " " " =(1+pxyz)(x-y)(y-z)|(1,x+y,0 ),( 1 ,y+z, 0 ),(z, z^2, 1 )|`

Applying `R_1 to R_1-R_2`

` " " " " =(1+pxyz)(x-y)(y-z)|(1-1,x+y-y-1,0 -0),( 1 ,y+z, 0 ),(z, z^2, 1 )|`

` " " " " =(1+pxyz)(x-y)(y-z)|(0,x+y-y-1,0),( 1 ,y+z, 0 ),(z, z^2, 1 )|`

` " " " " =(1+pxyz)(x-y)(y-z)(0[[1,y+z],[z,z^2]]-0[[0,x-z],[z,z^2]]+1[[0,x-z],[1,y+z]])`

` " " " " =(1+pxyz)(x-y)(y-z)[0-0+1(0-(x-z))]`

` " " " " =(1+pxyz)(x-y)(y-z)(z-x)`

` " " " " =` R.H.S.
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT ENGLISH|Exercise EXERCISE 5.7|17 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT ENGLISH|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants, prove the following: |[x,x^2,1+px^3],[y,y^2,1+py^3],[z,z^2,1+pz^3]|=(1+pxyz)(x-y)(y-z)(z-x)

For any scalar p prove that =|[x,x^2, 1+p x^3],[y, y^2, 1+p y^3],[z, z^2 ,1+p z^3]|=(1+p x y z)(x-y)(y-z)(z-x) .

Using properties of determinant prove that: |[1,x+y, x^2+y^2],[1, y+z, y^2+z^2],[1, z+x, z^2+x^2]|= (x-y)(y-z)(z-x)

Using properties of determinats prove that : |(x,x(x^(2)+1),x+1),(y,y(y^(2)+1),y+1),(z,z(z^(2)+1),z +1)|=(x-y)(y-z)(z-x)(x+y+z)

Using properties of determinants, prove that |(a+x, y, z),(x, a+y, z),(x, y,a+z)|=a^2(a+x+y+z)

Using properties of determinants, prove that |[a+x,y,z],[x,a+y,z],[x,y,a+z]|=a^2(a+x+y+z)

By using properties of determinants. Show that: |[x,x^2,y z],[ y, y^2,z x],[ z, z^2,x y]|=(x-y)(y-z)(z-x)(x y+y z+z x)

Prove that : Det[[x,x^2,x^3],[y,y^2,y^3],[z,z^2,z^3]]=xyz(x-y)(y-z)(z-x)

Using properties of determinants, prove that |{:(y + z ,z + x ,x + y ),(z + x ,x + y ,y + z),(x + y ,y + z,z + x ):}|=2 |{:(x, y, z),(y, z, x),(z, x, y):}|= - 2 (x^(3) + y^(3) + z^(3) - 3xyz)

Using properties of determinants, prove that |{:(x,y,z),(x^(2),y^(2),z^(2)),(y+z,z+x,x+y):}|=(x-y)(y-z)(z-x)(x+y+z)

NCERT ENGLISH-DETERMINANTS-All Questions
  1. Using properties of determinants. Prove that|[1 ,1+p,1+p+q],[2, 3+2p,4...

    Text Solution

    |

  2. Using properties of determinants. Prove that|[3a,-a+b,-a+c],[-b+a,3b,-...

    Text Solution

    |

  3. Using properties of determinants, prove the following: |xx^2 1+p x...

    Text Solution

    |

  4. Using properties of determinants. Prove that|(alpha,alpha^2,beta+gamma...

    Text Solution

    |

  5. Evaluate |[1,x, y],[1,x+y, y],[1,x,x+y]|

    Text Solution

    |

  6. Write Minors and Cofactors of the elements of following determinants:...

    Text Solution

    |

  7. Using Cofactors of elements of second row, evaluate Delta=|(5, 3, 8),(...

    Text Solution

    |

  8. Write Minors and Cofactors of the elements of following determinants:...

    Text Solution

    |

  9. If Delta=|[a(11),a(12),a(13)],[a(21),a(22),a(23)],[a(31),a(32),a(33)]|...

    Text Solution

    |

  10. Using Cofactors of elements of third column, evaluate Delta=|(1,x, y ...

    Text Solution

    |

  11. Without expanding, prove that Delta=|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0

    Text Solution

    |

  12. EvaluateDelta=|1a b c1b c a1c a b|

    Text Solution

    |

  13. Show that |a b c a+2x b+2y c+2z x y z|=0

    Text Solution

    |

  14. Prove that |a a+b a+b+c2a3a+2B4a+3b+2c3a6a+3b 10 a+6b+3c|=a^3

    Text Solution

    |

  15. Show that|[1+a,1,1],[1,1+b,1],[1,1,1+c]|=abc(1+1/a+1/b+1/c)=abc+bc+ca+...

    Text Solution

    |

  16. Find the area of the triangle whose vertices are (3, 8),(-4, 2)and (5,...

    Text Solution

    |

  17. Prove: |[b+c,a,a],[b,c+a,b],[c,c,a+b]|=4a b c

    Text Solution

    |

  18. If x, y, z are different and Delta=|xx^2 1+x^3y y^2 1+y^3z z^2 1+z^3|=...

    Text Solution

    |

  19. Find the equation of the line joining A( 1,3) and B (0,0) using deter...

    Text Solution

    |

  20. Find the minor of element 6 in the determinant Delta=|1 2 3 4 5 6 7 8 ...

    Text Solution

    |