Home
Class 12
MATHS
Using properties of determinants. Prove ...

Using properties of determinants. Prove that`|(alpha,alpha^2,beta+gamma),(beta,beta^2,gamma+alpha),(gamma,gamma^2,alpha+beta)|=(beta-gamma)(gamma-alpha)(alpha-beta)(alpha+beta+gamma)`

Text Solution

AI Generated Solution

To prove that \[ \left| \begin{array}{ccc} \alpha & \alpha^2 & \beta + \gamma \\ \beta & \beta^2 & \gamma + \alpha \\ \gamma & \gamma^2 & \alpha + \beta \end{array} \right| = (\beta - \gamma)(\gamma - \alpha)(\alpha - \beta)(\alpha + \beta + \gamma), ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT ENGLISH|Exercise EXERCISE 5.7|17 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT ENGLISH|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

Prove that: |[alpha,beta,gamma],[alpha^2,beta^2,gamma^2],[beta+gamma,gamma+alpha,alpha+beta]|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma) .

Prove that : cos^2 (beta-gamma) + cos^2 (gamma-alpha) + cos^2 (alpha-beta) =1+2cos (beta-gamma) cos (gamma-alpha) cos (alpha-beta) .

If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)|=

If alpha, beta, gamma are the roots of the cubic x^(3)-px^(2)+qx-r=0 Find the equations whose roots are (i) beta gamma +1/(alpha), gamma alpha+1/(beta), alpha beta+1/(gamma) (ii) (beta+gamma-alpha),(gamma+alpha-beta),(alpha+beta-gamma) Also find the valueof (beta+gamma-alpha)(gamma+alpha-beta)(alpha+beta-gamma)

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)

Prove that: cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2) .

Evaluate the following: |[1,1,1],[alpha, beta, gamma],[beta gamma, gamma alpha, alpha beta]|

Prove that |2alpha+beta+gamma+deltaalphabeta+gammadeltaalpha+beta+gamma+delta2(alpha+beta)(gamma+delta)alphabeta(gamma+delta)+gammadelta(alpha+beta)alphabeta+gammadeltaalphabeta(gamma+delta)+gammadelta(alpha+beta)2alphabetagammadelta|=0

Prove that: sinalpha+sinbeta+singamma-sin(alpha+beta+gamma)=4sin((alpha+beta)/2)sin((beta+gamma)/2)sin((gamma+alpha)/2)dot

NCERT ENGLISH-DETERMINANTS-All Questions
  1. Using properties of determinants. Prove that|[3a,-a+b,-a+c],[-b+a,3b,-...

    Text Solution

    |

  2. Using properties of determinants, prove the following: |xx^2 1+p x...

    Text Solution

    |

  3. Using properties of determinants. Prove that|(alpha,alpha^2,beta+gamma...

    Text Solution

    |

  4. Evaluate |[1,x, y],[1,x+y, y],[1,x,x+y]|

    Text Solution

    |

  5. Write Minors and Cofactors of the elements of following determinants:...

    Text Solution

    |

  6. Using Cofactors of elements of second row, evaluate Delta=|(5, 3, 8),(...

    Text Solution

    |

  7. Write Minors and Cofactors of the elements of following determinants:...

    Text Solution

    |

  8. If Delta=|[a(11),a(12),a(13)],[a(21),a(22),a(23)],[a(31),a(32),a(33)]|...

    Text Solution

    |

  9. Using Cofactors of elements of third column, evaluate Delta=|(1,x, y ...

    Text Solution

    |

  10. Without expanding, prove that Delta=|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0

    Text Solution

    |

  11. EvaluateDelta=|1a b c1b c a1c a b|

    Text Solution

    |

  12. Show that |a b c a+2x b+2y c+2z x y z|=0

    Text Solution

    |

  13. Prove that |a a+b a+b+c2a3a+2B4a+3b+2c3a6a+3b 10 a+6b+3c|=a^3

    Text Solution

    |

  14. Show that|[1+a,1,1],[1,1+b,1],[1,1,1+c]|=abc(1+1/a+1/b+1/c)=abc+bc+ca+...

    Text Solution

    |

  15. Find the area of the triangle whose vertices are (3, 8),(-4, 2)and (5,...

    Text Solution

    |

  16. Prove: |[b+c,a,a],[b,c+a,b],[c,c,a+b]|=4a b c

    Text Solution

    |

  17. If x, y, z are different and Delta=|xx^2 1+x^3y y^2 1+y^3z z^2 1+z^3|=...

    Text Solution

    |

  18. Find the equation of the line joining A( 1,3) and B (0,0) using deter...

    Text Solution

    |

  19. Find the minor of element 6 in the determinant Delta=|1 2 3 4 5 6 7 8 ...

    Text Solution

    |

  20. Find the inverse the matrix (if it exists)given in[[1, 0, 0],[ 3, 3, 0...

    Text Solution

    |