Home
Class 12
MATHS
Evaluate |[1,x, y],[1,x+y, y],[1,x,x+y]|...

Evaluate `|[1,x, y],[1,x+y, y],[1,x,x+y]|`

Text Solution

AI Generated Solution

To evaluate the determinant \( | \begin{bmatrix} 1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y \end{bmatrix} | \), we will follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ D = \begin{vmatrix} 1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y \end{vmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT ENGLISH|Exercise EXERCISE 5.7|17 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT ENGLISH|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following: |[1,x,y],[1, x+y, y],[1, x, x+y]|

Using Cofactors of elements of third column, evaluate Delta=|(1,x, y z),(1,y, z x),(1,z, x y)|

If A(x_1, y_1), B(x_2, y_2), C(x_3, y_3) are the vertices of a DeltaABC and (x, y) be a point on the median through A . Show that : |(x, y, 1), (x_1, y_1, 1), (x_2, y_2, 1)| + |(x, y, 1), (x_1, y_1, 1), (x_3, y_3, 1)|=0

Find the value of the "determinant" |{:(1,x,y+z),(1,y,z+x),(1,z,x+y):}|

The value of |[2x_1y_1, x_1y_2+x_2y_1, x_1y_3+x_3y_1], [x_1y_2+x_2y_1, 2x_2y_2, x_2y_3+x_3y_2], [x_1y_3+x_3y_1, x_2y_3+x_3y_2, 2x_3y_3]| is.

If A(x_(1), y_(1)), B(x_(2), y_(2)) and C (x_(3), y_(3)) are the vertices of a Delta ABC and (x, y) be a point on the internal bisector of angle A, then prove that b|(x,y,1),(x_(1),y_(1),1),(x_(2),y_(2),1)|+c|(x,y,1),(x_(1),y_(1),1),(x_(3),y_(3),1)|=0 where, AC = b and AB = c.

Using the method of integration find the area bounded by the curve |x|+|y| = 1 .[Hint: The required region is bounded by lines x + y = 1, x -y = 1, -x + y = 1 and -x -y = 1]dot

If the points (x_1, y_1),(x_2,y_2), and (x_3, y_3) are collinear show that (y_2-y_3)/(x_2x_3)+(y_3-y_1)/(x_3x_1)+(y_1-y_2)/(x_1x_2)=0

If (x^2+x)+i ya n d(-x-1)-i(x+2y) are conjugate of each other, then real value of x&y are x=-1,y=1 b. x=1,y=-1 c. x=1,y=1 d. x=-1,y=-1

If x , y ,z in [-1,1] such that cos^(-1)x+cos^1y+cos^(-1)z=3pi, then find the values of (1) x y+y z+z y and (2) x(y+z)+y(z+x)+z(x+y)

NCERT ENGLISH-DETERMINANTS-All Questions
  1. Using properties of determinants, prove the following: |xx^2 1+p x...

    Text Solution

    |

  2. Using properties of determinants. Prove that|(alpha,alpha^2,beta+gamma...

    Text Solution

    |

  3. Evaluate |[1,x, y],[1,x+y, y],[1,x,x+y]|

    Text Solution

    |

  4. Write Minors and Cofactors of the elements of following determinants:...

    Text Solution

    |

  5. Using Cofactors of elements of second row, evaluate Delta=|(5, 3, 8),(...

    Text Solution

    |

  6. Write Minors and Cofactors of the elements of following determinants:...

    Text Solution

    |

  7. If Delta=|[a(11),a(12),a(13)],[a(21),a(22),a(23)],[a(31),a(32),a(33)]|...

    Text Solution

    |

  8. Using Cofactors of elements of third column, evaluate Delta=|(1,x, y ...

    Text Solution

    |

  9. Without expanding, prove that Delta=|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0

    Text Solution

    |

  10. EvaluateDelta=|1a b c1b c a1c a b|

    Text Solution

    |

  11. Show that |a b c a+2x b+2y c+2z x y z|=0

    Text Solution

    |

  12. Prove that |a a+b a+b+c2a3a+2B4a+3b+2c3a6a+3b 10 a+6b+3c|=a^3

    Text Solution

    |

  13. Show that|[1+a,1,1],[1,1+b,1],[1,1,1+c]|=abc(1+1/a+1/b+1/c)=abc+bc+ca+...

    Text Solution

    |

  14. Find the area of the triangle whose vertices are (3, 8),(-4, 2)and (5,...

    Text Solution

    |

  15. Prove: |[b+c,a,a],[b,c+a,b],[c,c,a+b]|=4a b c

    Text Solution

    |

  16. If x, y, z are different and Delta=|xx^2 1+x^3y y^2 1+y^3z z^2 1+z^3|=...

    Text Solution

    |

  17. Find the equation of the line joining A( 1,3) and B (0,0) using deter...

    Text Solution

    |

  18. Find the minor of element 6 in the determinant Delta=|1 2 3 4 5 6 7 8 ...

    Text Solution

    |

  19. Find the inverse the matrix (if it exists)given in[[1, 0, 0],[ 3, 3, 0...

    Text Solution

    |

  20. Find the inverse the matrix (if it exists) given in[(2, 1, 3),( 4,-1, ...

    Text Solution

    |