Home
Class 12
MATHS
Write Minors and Cofactors of the elemen...

Write Minors and Cofactors of the elements of following determinants:
(i) `|(1, 0, 0),( 0, 1, 0),( 0, 0, 1)|` (ii) `|(1, 0, 4),( 3, 5,-1),( 0, 1, 2)|`

Text Solution

Verified by Experts

(i) `|(1, 0, 0),( 0, 1, 0),( 0, 0, 1)|`

Minor of `a_(11)= M_(11)=|[1,0],[0,1]|=1(1)-0=1`

`a_(12)= M_(12)=|[0,0],[0,1]|=0-0=0`

`a_(13)= M_(13)=|[0,1],[0,0]|=0-0=0`

`a_(21)= M_(21)=|[0,0],[0,1]|=0-0=0`

`a_(22)= M_(22)=|[1,0],[0,1]|=1(1)-0=1`

`a_(23)= M_(23)=|[1,0],[0,0]|=0-0=0`

`a_(31)= M_(31)=|[0,0],[1,0]|=0-0=0`

`a_(32)= M_(32)=|[1,0],[0,0]|=0-0=0`

`a_(33)= M_(33)=|[1,0],[0,1]|=1(1)-0=1`


Cofactor of `a_(ij)=A_(ij)=(-1)^(i+j).M_(ij)`

Cofactor of `a_(11)=A_(11)=(-1)^(1+1).M_(11)=(-1)^2xx1=1`

`a_(12)=A_(12)=(-1)^(1+2).M_(12)=(-1)^3xx0=0`

`a_(13)=A_(13)=(-1)^(1+3).M_(13)=(-1)^4xx0=0`

`a_(21)=A_(21)=(-1)^(2+1).M_(21)=(-1)^3xx0=0`

`a_(22)=A_(22)=(-1)^(2+2).M_(22)=(-1)^4xx1=1`

`a_(23)=A_(23)=(-1)^(23).M_(23)=(-1)^5xx0=0`

`a_(31)=A_(31)=(-1)^(3+1).M_(31)=(-1)^4xx0=0`

`a_(32)=A_(32)=(-1)^(3+2).M_(32)=(-1)^5xx0=0`

`a_(33)=A_(33)=(-1)^(3+3).M_(33)=(-1)^6xx1=1`



(ii) `|(1, 0, 4),( 3, 5,-1),( 0, 1, 2)|`

Minor of `a_(11)= M_(11)=|[5,-1],[1,2]|=5(2)-1(-1)=10+1=11`

`a_(12)= M_(12)=|[3,-1],[0,2]|=6-0=6`

`a_(13)= M_(13)=|[3,5],[0,1]|=3-0=3`

`a_(21)= M_(21)=|[0,4],[1,2]|=0-4=-4`

`a_(22)= M_(22)=|[1,4],[0,2]|=2-0=2`

`a_(23)= M_(23)=|[1,0],[0,1]|=1-0=1`

`a_(31)= M_(31)=|[0,4],[5,-1]|=0-20=-20`

`a_(32)= M_(32)=|[1,4],[3,-1]|=-1-12=-13`

`a_(33)= M_(33)=|[1,0],[3,5]|=5-0=5`


Cofactor of `a_(ij)=A_(ij)=(-1)^(i+j).M_(ij)`

Cofactor of `a_(11)=A_(11)=(-1)^(1+1).M_(11)=(-1)^2xx11=11`

`a_(12)=A_(12)=(-1)^(1+2).M_(12)=(-1)^3xx6=(-1)6=-6`

`a_(13)=A_(13)=(-1)^(1+3).M_(13)=(-1)^4xx3=(1)3=3`

`a_(21)=A_(21)=(-1)^(2+1).M_(21)=(-1)^3xx(-4)=(-1)(-4)=4`

`a_(22)=A_(22)=(-1)^(2+2).M_(22)=(-1)^4xx2=(1)(2)=2`

`a_(23)=A_(23)=(-1)^(23).M_(23)=(-1)^5xx1=(-1)(1)=-1`

`a_(31)=A_(31)=(-1)^(3+1).M_(31)=(-1)^4xx(-20)=1(-20)=-20`

`a_(32)=A_(32)=(-1)^(3+2).M_(32)=(-1)^5xx(-13)=(-1)(-13)=1 `

`a_(33)=A_(33)=(-1)^(3+3).M_(33)=(-1)^6xx(5)=1(5)=5`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT ENGLISH|Exercise EXERCISE 5.7|17 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT ENGLISH|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

Write Minors and Cofactors of the elements of following determinants: (i) |(2,-4),( 0 ,3)| (ii) |(a ,c),( b, d)|

Write Minors and Cofactors of the elements of following determinants : (i) |{:(2,-4),(0,3):}| (ii) |{:(a,b),(c,d):}|

Write minros and cofactros of the elements of the determinants: (i) |{:(1,0,4),(3,5,-1),(0,1,2):}|

Evalute the determinants : A=|{:(1,0,1),(0,1,2),(0,0,4):}|

The cofactor of the element '4' in the determinant |(1,3,5,1),(2,3,4,2),(8,0,1,1),(0,2,1,1)| is

Using Cofactors of elements of second row, evaluate Delta=|(5, 3, 8),( 2, 0, 1),( 1, 2 ,3)|

Write the minor and cofactor of each element of the following determinants and also evaluate the determinant in each case: |1,0,4],[3,5,-1],[0,1,2]|

In which plane the following points lie : (i) (1,3, 0) (ii) (-2, 0, 4) (iii) (0, 4, -1)

Write the minor and cofactor of each element of the following determinants and also evaluate the determinant in each case: |[1,0,0],[0,1,0],[0,0,1]|

Write the minor and cofactor of each element of the following determinants and also evaluate the determinant in each case: |[5,-10],[0,3]|

NCERT ENGLISH-DETERMINANTS-All Questions
  1. Write Minors and Cofactors of the elements of following determinants:...

    Text Solution

    |

  2. Using Cofactors of elements of second row, evaluate Delta=|(5, 3, 8),(...

    Text Solution

    |

  3. Write Minors and Cofactors of the elements of following determinants:...

    Text Solution

    |

  4. If Delta=|[a(11),a(12),a(13)],[a(21),a(22),a(23)],[a(31),a(32),a(33)]|...

    Text Solution

    |

  5. Using Cofactors of elements of third column, evaluate Delta=|(1,x, y ...

    Text Solution

    |

  6. Without expanding, prove that Delta=|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0

    Text Solution

    |

  7. EvaluateDelta=|1a b c1b c a1c a b|

    Text Solution

    |

  8. Show that |a b c a+2x b+2y c+2z x y z|=0

    Text Solution

    |

  9. Prove that |a a+b a+b+c2a3a+2B4a+3b+2c3a6a+3b 10 a+6b+3c|=a^3

    Text Solution

    |

  10. Show that|[1+a,1,1],[1,1+b,1],[1,1,1+c]|=abc(1+1/a+1/b+1/c)=abc+bc+ca+...

    Text Solution

    |

  11. Find the area of the triangle whose vertices are (3, 8),(-4, 2)and (5,...

    Text Solution

    |

  12. Prove: |[b+c,a,a],[b,c+a,b],[c,c,a+b]|=4a b c

    Text Solution

    |

  13. If x, y, z are different and Delta=|xx^2 1+x^3y y^2 1+y^3z z^2 1+z^3|=...

    Text Solution

    |

  14. Find the equation of the line joining A( 1,3) and B (0,0) using deter...

    Text Solution

    |

  15. Find the minor of element 6 in the determinant Delta=|1 2 3 4 5 6 7 8 ...

    Text Solution

    |

  16. Find the inverse the matrix (if it exists)given in[[1, 0, 0],[ 3, 3, 0...

    Text Solution

    |

  17. Find the inverse the matrix (if it exists) given in[(2, 1, 3),( 4,-1, ...

    Text Solution

    |

  18. If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the sys...

    Text Solution

    |

  19. Find adjoint of the matrice in[(1,-1, 2),( 2, 3, 5),(-2, 0, 1)]

    Text Solution

    |

  20. Verify A (a d j A) = (a d j A) A = |A|I for [(2 ,3),(-4,-6)]

    Text Solution

    |