Home
Class 12
MATHS
Using Cofactors of elements of third col...

Using Cofactors of elements of third column, evaluate `Delta=|(1,x, y z),(1,y, z x),(1,z, x y)|`

Text Solution

AI Generated Solution

To evaluate the determinant \( \Delta = \begin{vmatrix} 1 & x & y z \\ 1 & y & z x \\ 1 & z & x y \end{vmatrix} \) using the cofactors of the elements of the third column, we will follow these steps: ### Step 1: Identify the Elements of the Third Column The third column of the determinant is \( (y z, z x, x y) \). ### Step 2: Calculate the Cofactors We need to calculate the cofactors of each element in the third column. ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT ENGLISH|Exercise EXERCISE 5.7|17 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT ENGLISH|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

Using Cofactors of elements of third column, evaluate Delta=|[1 , x, yz],[1, y, zx],[1, z, xy]|

evaluate: |(a+x,y,z),(x,a+y,z),(x,y,a+z)|

Find the value of the "determinant" |{:(1,x,y+z),(1,y,z+x),(1,z,x+y):}|

Prove that : |{:(1,x,yz),(1,y,zx),(1,z,xy):}|=(x-y)(y-z)(z-x)

evaluate: |(3x,-x+y,-x+z),(x-y,3y,z-y),(x-z,y-z,3z)|

Without expanding, prove that Delta=|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0

Using properties of determinants, prove that |{:(x,y,z),(x^(2),y^(2),z^(2)),(y+z,z+x,x+y):}|=(x-y)(y-z)(z-x)(x+y+z)

If Delta=|{:(,x,2y-z,-z),(,y,2x-z,-z),(,y,2y-z,2x-2y-z):}| ,then

Using properties of determinant prove that: |[1,x+y, x^2+y^2],[1, y+z, y^2+z^2],[1, z+x, z^2+x^2]|= (x-y)(y-z)(z-x)

Using properties of determinats prove that : |(x,x(x^(2)+1),x+1),(y,y(y^(2)+1),y+1),(z,z(z^(2)+1),z +1)|=(x-y)(y-z)(z-x)(x+y+z)

NCERT ENGLISH-DETERMINANTS-All Questions
  1. Write Minors and Cofactors of the elements of following determinants:...

    Text Solution

    |

  2. If Delta=|[a(11),a(12),a(13)],[a(21),a(22),a(23)],[a(31),a(32),a(33)]|...

    Text Solution

    |

  3. Using Cofactors of elements of third column, evaluate Delta=|(1,x, y ...

    Text Solution

    |

  4. Without expanding, prove that Delta=|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0

    Text Solution

    |

  5. EvaluateDelta=|1a b c1b c a1c a b|

    Text Solution

    |

  6. Show that |a b c a+2x b+2y c+2z x y z|=0

    Text Solution

    |

  7. Prove that |a a+b a+b+c2a3a+2B4a+3b+2c3a6a+3b 10 a+6b+3c|=a^3

    Text Solution

    |

  8. Show that|[1+a,1,1],[1,1+b,1],[1,1,1+c]|=abc(1+1/a+1/b+1/c)=abc+bc+ca+...

    Text Solution

    |

  9. Find the area of the triangle whose vertices are (3, 8),(-4, 2)and (5,...

    Text Solution

    |

  10. Prove: |[b+c,a,a],[b,c+a,b],[c,c,a+b]|=4a b c

    Text Solution

    |

  11. If x, y, z are different and Delta=|xx^2 1+x^3y y^2 1+y^3z z^2 1+z^3|=...

    Text Solution

    |

  12. Find the equation of the line joining A( 1,3) and B (0,0) using deter...

    Text Solution

    |

  13. Find the minor of element 6 in the determinant Delta=|1 2 3 4 5 6 7 8 ...

    Text Solution

    |

  14. Find the inverse the matrix (if it exists)given in[[1, 0, 0],[ 3, 3, 0...

    Text Solution

    |

  15. Find the inverse the matrix (if it exists) given in[(2, 1, 3),( 4,-1, ...

    Text Solution

    |

  16. If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the sys...

    Text Solution

    |

  17. Find adjoint of the matrice in[(1,-1, 2),( 2, 3, 5),(-2, 0, 1)]

    Text Solution

    |

  18. Verify A (a d j A) = (a d j A) A = |A|I for [(2 ,3),(-4,-6)]

    Text Solution

    |

  19. Find adjoint of the matrice in[(1, 2),( 3, 4)]

    Text Solution

    |

  20. Find the inverse the matrix (if it exists)given in[(-1, 5),(-3, 2)]

    Text Solution

    |