Home
Class 12
MATHS
Without expanding the determinant, prove...

Without expanding the determinant, prove that `|(a,a^2,bc),(b,b^2,ca),(c,c^2,ab)|=|(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3)|`

Text Solution

AI Generated Solution

To prove that the determinants \( |(a, a^2, bc), (b, b^2, ca), (c, c^2, ab)| \) and \( |(1, a^2, a^3), (1, b^2, b^3), (1, c^2, c^3)| \) are equal without expanding them, we can follow these steps: ### Step 1: Write the Left-Hand Side (LHS) Determinant The LHS determinant is: \[ D_1 = \begin{vmatrix} a & a^2 & bc \\ b & b^2 & ca \\ ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT ENGLISH|Exercise EXERCISE 5.7|17 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT ENGLISH|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

Without expanding at any state, prove that |((1)/(a),a,bc),((1)/(b),b,ca),((1)/(c ),c,ab)|=0

Without expanding at any stage, prove that |{:(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2)):}|=|{:(1,a,bc),(1,b,ca),(1,c,ab):}|

Without expanding at any state, prove that |(1,bc,a(b+c)),(1,ca,b(c+a)),(1,ab,c(a+b))|=0

Without expanding evaluate the determinant "Delta"=|(1, 1, 1),(a, b, c),( a^2,b^2,c^2)| .

Without expanding determinant at any stage evaluate |(1,1,1),(a,b,c),(a^(2)-bc,b^(2)-ca,c^(2)-ab)|

Using properties of determinant prove that |(a^(2)+1, ab, ac),(ab, b^(2)+1, bc),(ca, cb,c^(2)+1)|=(1+a^(2)+b^(2)+c^(2)) .

Using properties of determinants, prove the following |(a^2,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)|=1+a^2+b^2+c^2 .

Using properties of determinants, prove that : |{:(a^(2)+1,ab,ac),(ba,b^(2)+1,bc),(ca,cb,c^(2)+1):}|=a^(2)+b^(2)+c^(2)+1

Using properties of determinants, prove the following |(a^2+1,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)|=1+a^2+b^2+c^2 .

Prove that |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]|=1+a^2+b^2+c^2

NCERT ENGLISH-DETERMINANTS-All Questions
  1. Evaluate |(x, y, x+y),( y, x+y, x),( x+y, x, y)|.

    Text Solution

    |

  2. Solve system of linear equations, using matrix method, 5x + 2y = 3" "...

    Text Solution

    |

  3. Without expanding the determinant, prove that |(a,a^2,bc),(b,b^2,ca),(...

    Text Solution

    |

  4. Evaluate |(cosalphacosbeta,cosalpha sinbeta , - sin alpha),(-sin beta,...

    Text Solution

    |

  5. If a, b and c are real numbers, and Delta=|b+cc+a a+b c+a a+bb+c a+bb+...

    Text Solution

    |

  6. Solve the equation |(x+a, x,x),(x,x+a, x),(x,x,x+a)|=0, a!= 0

    Text Solution

    |

  7. Prove: |a^2b c a c+c^2a^2+a bb^2a c a bb^2+b cc^2|=4a^2b^2c^2

    Text Solution

    |

  8. Solve system of linear equations, using matrix method, 2x+y+z=1" "x-2...

    Text Solution

    |

  9. Solve system of linear equations, using matrix method, x - y + z = 4"...

    Text Solution

    |

  10. The sum of three numbers is 6. If multiply theird number by 3 and add ...

    Text Solution

    |

  11. Solve the following system of equations by matrix method. 3x-2y + 3z=...

    Text Solution

    |

  12. Solve the system of equations2x + 5y = 1 and 3x + 2y = 7

    Text Solution

    |

  13. Show that the matrix A=[2 3 1 2]satisfies the equation A^2-4A+I=0

    Text Solution

    |

  14. If A=[[2,3],[1,-4]]and B=[[1,-2],[-1,3]], then verify that (A B)^(-1)=...

    Text Solution

    |

  15. If A=[[1 ,3 ,3],[ 1, 4 ,3],[ 1, 3, 4]],then verify thatA a d j A = |A|...

    Text Solution

    |

  16. Find adj for A=[[2 , 3 ] , [1 , 4]]

    Text Solution

    |

  17. Find minors and cofactors of the elements of the determinant|2-3 5 6 ...

    Text Solution

    |

  18. Find minors and cofactors of the elements a(11), a(21)in the determin...

    Text Solution

    |

  19. Find minors and cofactors of all the elements of the determinant |[1,...

    Text Solution

    |

  20. Using the property of determinants and without expanding, prove that:...

    Text Solution

    |