Home
Class 12
MATHS
By using properties of determinants. Sho...

By using properties of determinants. Show that:
(i) `|[1,a, a^2],[ 1,b,b^2],[ 1,c,c^2]|=(a-b)(b-c)(c-a)`
(ii) `|[1, 1, 1],[a, b, c],[ a^3,b^3,c^3]|=(a-b)(b-c)(c-a)(a+b+c)`

Text Solution

AI Generated Solution

To solve the given determinants using properties of determinants, we will break down the solution into two parts as specified in the question. ### Part (i) We need to show that: \[ | \begin{bmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{bmatrix} | = (a-b)(b-c)(c-a) \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT ENGLISH|Exercise EXERCISE 5.7|17 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT ENGLISH|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

Show that |[1,a,a^2],[1,b,b^2],[1,c,c^2]|=(a-b)(b-c)(c-a)

Using properties of determinant show that: |[1 , a , bc] , [1 , b , ca] , [1 , c , a b]|=(a-b)(b-c)(c-a)

Prove that |[1,a,a^3],[1,b,b^3],[1,c,c^3]|=(a-b)(b-c)(c-a)(a+b+c)

Using properties of determinants, show that |1 a a^2 -b c 1 b b^2 -c a 1 c c^2 -a b|=0

By using properties of determinants. Show that: |[a^2+1,a b, a c],[ a b,b^2+1,b c],[c a, c b, c^2+1]|=(1+a^2+b^2+c^2)

Show that |[a ,b ,c],[ a^2,b^2,c^2],[bc, ca, ab]|=|[1, 1, 1],[a^2,b^2,c^2],[a^3,b^3,c^3]|=(a-b)(b-c)(c-a)(a b+b c+c a) .

Using properties of determinants. Prove that |[3a,-a+b,-a+c],[-b+a,3b,-b+c],[-c+a,-c+b,3c]|=3(a+b+c)(a b+b c+c a)

Using properties of determinants. Prove that |[3a,-a+b,-a+c], [-b+a,3b,-b+c], [-c+a,-c+b,3c]|=3(a+b+c)(a b+b c+c a)

Using properties of determinants, prove that |{:(,a,b,b+c),(,c,a,c+a),(,b,c,a+b):}|=(a+b+c) (a-c)^2

Using properties of determinant, prove that |(2a, a-b-c, 2a), (2b, 2b, b-c-a), (c-a-b,2c,2c)|=(a+b+c)^(3) .