Home
Class 12
MATHS
Differentiate w.r.t. x the function cot^...

Differentiate w.r.t. x the function `cot^(-1)""((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))),0 < x < pi/2`

Text Solution

AI Generated Solution

To differentiate the function \( y = \cot^{-1} \left( \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right) \) with respect to \( x \) in the interval \( 0 < x < \frac{\pi}{2} \), we will follow these steps: ### Step 1: Simplify the Argument of the Cotangent Inverse We start with the expression inside the cotangent inverse: \[ z = \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \] To simplify this, we can rationalize the denominator by multiplying the numerator and denominator by \( \sqrt{1 + \sin x} + \sqrt{1 - \sin x} \): ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate w.r.t. x the function : cos^(2)sqrt(2x)

cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=(x)/(2), x in (0,(pi)/(4))

Differentiate w.r.t. x the function sin^(-1)(xsqrt(x)),0lt=xlt=1

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)

Differentiate tan^(-1){(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))} , 0 < x < pi

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2, x in (0,pi/4)

If y="tan"^(-1)((sqrt(1+sinx)+sqrt(1-sinx)))/((sqrt(1+sinx)-sqrt(1-sinx)))," find "(dy)/(dx).

Differentiate w.r.t. x the function (logx)^(logx), x >1

Prove the following: cot^(-1)[(sqrt(1+sinx )+sqrt(1-sinx))/(sqrt(1+sinx)-\ sqrt(1-sinx))]=x/2,\ x (0,pi/4)