Home
Class 12
MATHS
Find (dy)/(dx) in the following:y=sin^(...

Find `(dy)/(dx)` in the following:`y=sin^(-1)((2x)/(1+x^2))`

A

`2/(1+x^2)`

B

`5/(4+x^2)`

C

`1/(3+x^2)`

D

`5/(6+x^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)\), we can follow these steps: ### Step 1: Substitute \(x\) with \(\tan(\theta)\) We can use the trigonometric identity to simplify the expression. We know that: \[ \frac{2\tan(\theta)}{1+\tan^2(\theta)} = \sin(2\theta) \] Thus, we can set: \[ y = \sin^{-1}\left(\frac{2\tan(\theta)}{1+\tan^2(\theta)}\right) \] This implies: \[ y = \sin^{-1}(\sin(2\theta)) = 2\theta \] ### Step 2: Express \(\theta\) in terms of \(x\) Since we have set \(x = \tan(\theta)\), we can express \(\theta\) as: \[ \theta = \tan^{-1}(x) \] Therefore: \[ y = 2\tan^{-1}(x) \] ### Step 3: Differentiate both sides with respect to \(x\) Now we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = 2 \cdot \frac{d}{dx}(\tan^{-1}(x)) \] Using the derivative of \(\tan^{-1}(x)\), which is \(\frac{1}{1+x^2}\), we get: \[ \frac{dy}{dx} = 2 \cdot \frac{1}{1+x^2} \] ### Final Result Thus, the derivative is: \[ \frac{dy}{dx} = \frac{2}{1+x^2} \] ---

To find \(\frac{dy}{dx}\) for the function \(y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)\), we can follow these steps: ### Step 1: Substitute \(x\) with \(\tan(\theta)\) We can use the trigonometric identity to simplify the expression. We know that: \[ \frac{2\tan(\theta)}{1+\tan^2(\theta)} = \sin(2\theta) \] Thus, we can set: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) in the following: y=sin^(-1)((1-x^2)/(1+x^2)) , 0 lt x lt 1

Find (dy)/(dx) in the following: y=cos^(-1)((2x)/(1+x^2)),-1 < x < 1

Find (dy)/(dx) in the following: y=sec^(-1)(1/(2x^2-1))

Find (dy)/(dx) in the following: 2x + 3y = sin x

Find (dy)/(dx) in the following: sin^2x+cos^2y=1

Find (dy)/(dx) for the function: y=a^(sin^(-1)x)^(2)

Find (dy)/(dx) for the function: y=a^((sin^(-1)x)^2

Find (dy)/(dx) " when " y = sin^(-1) sqrt((1+x^(2))/2)

Find (dy)/(dx) for the function: y= x^(1/2) + Sin 2x

Find dy/dx if x=sin2y