Home
Class 12
MATHS
If y=A e^(m x)+B e^(n x), show that (d^2...

If `y=A e^(m x)+B e^(n x)`, show that `(d^2y)/(dx^2)-(m+n)(dy)/(dx)+m n y=0`

Text Solution

Verified by Experts

`y=A e^(m x)+B e^(n x)`

Differentiating w.r.t. x

`dy/dx=(d(A e^(m x)+B e^(n x)))/dx`

`dy/dx=(d(A e^(m x)))/dx+(d(B e^(n x)))/dx`

`dy/dx=A.e^(m x).(d(m x))/dx+B.e^(n x).(d(nx))/dx`

`dy/dx=A.e^(m x).m+B.e^(n x).n`

`dy/dx=Ame^(m x)+Bn e^(n x)`

Again Differentiating w.r.t. x

`d/dx(dy/dx)=(d(Ame^(m x)+Bn e^(n x)))/dx`

`(d^2y)/(dx^2)=(d(Ame^(m x)))/dx+(d(Bn e^(n x)))/dx`

`(d^2y)/(dx^2)=Am(d(e^(m x)))/dx+Bn(d( e^(n x)))/dx`

`(d^2y)/(dx^2)=Am.e^(m x).(d(mx))/dx+Bn.e^(n x).(d(nx ))/dx`

`(d^2y)/(dx^2)=Am.e^(m x).m+Bn.e^(n x).n`

`(d^2y)/(dx^2)=Am^(2)e^(m x)+Bn^(2)e^(n x)`


We need to prove

`(d^2y)/(dx^2)-(m+n)(dy)/(dx)+m n y=0`


Solving L.H.S.

`(d^2y)/(dx^2)-(m+n)(dy)/(dx)+m n y`

`=(Am^2e^(mx)+Bn^2e^(nx))-(m+n)(Ame^(mx)+Bn e^(nx))+mn(Ae^(mx)+Be^(nx))`

`=Am^2e^(mx)+Bn^2e^(nx)-m(Ame^(mx)+Bn e^(nx))-n(Ame^(mx)+Bn e^(nx))+mnAe^(mx)+mnBe^(nx)`

`=Am^2e^(mx)+Bn^2e^(nx)-Am^2e^(mx)-Bmn e^(nx)-Anme^(mx)-Bn^2 e^(nx)+mnAe^(mx)+mnBe^(nx)`

`=Am^2e^(mx)-Am^2e^(mx)+Bn^2e^(nx)-Bn^2e^(nx)-Bmn e^(nx)+Bmn e^(nx)-Anme^(mx)+Anm e^(mx)`

`=0`

= R.H.S.

Hence Proved.
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT ENGLISH|Exercise EXERCISE 5.5|18 Videos
  • APPLICATION OF INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 8.2|7 Videos
  • DETERMINANTS

    NCERT ENGLISH|Exercise All Questions|116 Videos

Similar Questions

Explore conceptually related problems

If y=a e^(2x)+b e^(-x) , show that, (d^2y)/(dx^2)-(dy)/(dx)-2y=0 .

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2 .

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2 .

If e^y(x+1)=1 . Show that (d^2y)/(dx^2)=((dy)/(dx))^2

If y=e^-x cos x , show that (d^2y)/(dx^2)= 2e^-x sin x

If y=e^x(sin x+cosx) prove that (d^2y)/(dx^2)-2 (dy)/(dx)+2y=0 .

If y=Acosn x+Bsinn x , show that (d^2y)/(dx^2)+n^2\ y=0 .

If x^my^n = (x + y)^(m+n) , prove that (d^2y)/(dx^2)=0 .

If e^(y) (x+1) =1 show that (d^(2) y)/( dx^(2)) = ((dy)/(dx))^(2)