Home
Class 12
MATHS
If cosy=xcos(a+y) , with cosa!=+-1 , pro...

If `cosy=xcos(a+y)` , with `cosa!=+-1` , prove that `(dy)/(dx)=(cos^2(a+y))/(sina)` .

Text Solution

Verified by Experts

Given

`cos y = x cos (a + y)`

`cosy=xcos(a+y)`

`cosy/cos(a+y)=x`

`x=cosy/cos(a+y)`

Differentiating both sides w.r.t. x

`(d(x))/dx=d/dx(cosy/cos(a+y))`


`1=d/dx(cosy/cos(a+y)).dy/dx`

Using quotient rule

`1=(((d(cosy))/dy.cos(a+y)-(d(cos(a+y)))/dy.cosy)/(cos^2(a+y))).dy/dx`

`1=((-siny.cos(a+y)-(-sin(a+y))(d(a+y))/dy.cosy)/(cos^2(a+y))).dy/dx`

`1=((-siny.cos(a+y)+sin(a+y)(0+1).cosy)/(cos^2(a+y))).dy/dx`

`1=((sin(a+y).cosy-cos(a+y).siny)/(cos^2(a+y))).dy/dx`

`1=(sin((a+y)-y))/(cos^2(a+y)).dy/dx`

`(cos^2(a+y))/(sin(a))=dy/dx`

`dy/dx=(cos^2(a+y))/(sin(a))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If cosy=xcos(a+y) , where cosa!=-1 , prove that (dy)/(dx)=(cos^2(a+y))/(sina)

If xsin(a+y)+sinacos(a+y)=0 , prove that (dy)/(dx)=(s in^2(a+y))/(sina)

If siny=xsin(a+y), prove that (dy)/(dx)=(sin^2(a+y))/(sina)

If xsin(a+y)+sina cos(a+y)=0 , prove that (dy)/(dx)=sin^2(a+y)/sina

If siny=xsin(a+y), prove that (dy)/(dx)= (sin^2(a+y))/(sina) .

If x y=1 , prove that (dy)/(dx)+y^2=0 .

If x sin(a+y)+sina.cos(a+y)=0 , then prove that (dy)/(dx) = (sin^(2)(a+y))/(sina)

If y=xsiny , prove that (dy)/(dx)=y/(x(1-xcosy))

If siny=xsin(a+y),\ \ prove that (dy)/(dx)=(sin ^2\ (a+y))/(sina)

If y=xsiny , prove that (dy)/(dx)=y/(x(1-xcosy)