Home
Class 12
MATHS
Find (dy)/(dx) in the following:y=sin^(...

Find `(dy)/(dx)` in the following:`y=sin^(-1)(2xsqrt(1-x^2)),-1/(sqrt(2)) lt x lt 1/(sqrt(2))`

Text Solution

AI Generated Solution

To find \(\frac{dy}{dx}\) for the function \(y = \sin^{-1}(2x\sqrt{1-x^2})\), we can follow these steps: ### Step 1: Set up the function We start with the given function: \[ y = \sin^{-1}(2x\sqrt{1-x^2}) \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT ENGLISH|Exercise EXERCISE 5.8|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|47 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT ENGLISH|Exercise EXERCISE 5.4|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 8.2|7 Videos
  • DETERMINANTS

    NCERT ENGLISH|Exercise All Questions|116 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) in the following: y=sin^(-1)((1-x^2)/(1+x^2)) , 0 lt x lt 1

Differentiate tan^(-1)(x/(sqrt(1-x^2))) with respect to sin^(-1)(2xsqrt(1-x^2)), if -1/(sqrt(2)) < x< 1 /(sqrt(2))

Differentiate each of the following functions with respect to x : (i) sin^(-1)(2xsqrt(1-x^2)),-1/(sqrt(2))ltxlt1/(sqrt(2)) (ii) cos^(-1)(2x(sqrt(1-x^2)),-1/sqrt(2)ltxlt1/sqrt2

Differentiate sin^(-1)(2xsqrt(1-x^2)),\ -1/(sqrt(2))

Differentiate sin^(-1)(2xsqrt(1-x^2)) with respect to x , if -1/(sqrt(2))

Find (dy)/(dx) " when " y = sin^(-1) sqrt((1+x^(2))/2)

Find (dy)/(dx), if y=sin^(-1)[xsqrt(\ 1-x)-\ sqrt(x)\ sqrt(1-x^2)\ ]\

y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1 find dy/dx

y=sin^(-1)(x/sqrt(1+x^2))+cos^(-1)(1/sqrt(1+x^2)), Find dy/dx

(dy)/(dx)=(sqrt(x^(2)-1))/(sqrt(y^(2)-1))