Home
Class 12
MATHS
Find (dy)/(dx) in the following:y=sec^(...

Find `(dy)/(dx)` in the following:`y=sec^(-1)(1/(2x^2-1))`

Text Solution

AI Generated Solution

To find \(\frac{dy}{dx}\) for the function \(y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right)\), we will follow these steps: ### Step 1: Rewrite the function in terms of \(\theta\) We know that if \(y = \sec^{-1}(u)\), then \(u = \sec(\theta)\) for some angle \(\theta\). Thus, we can write: \[ \frac{1}{2x^2 - 1} = \sec(\theta) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT ENGLISH|Exercise EXERCISE 5.8|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|47 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT ENGLISH|Exercise EXERCISE 5.4|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 8.2|7 Videos
  • DETERMINANTS

    NCERT ENGLISH|Exercise All Questions|116 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) in the following: y=sin^(-1)((2x)/(1+x^2))

Find (dy)/(dx) in the following: y=sin^(-1)((1-x^2)/(1+x^2)) , 0 lt x lt 1

Find (dy)/(dx) in the following: y=cos^(-1)((2x)/(1+x^2)),-1 < x < 1

Find (dy)/(dx) for the function: y=a^(sin^(-1)x)^(2)

Find (dy)/(dx) for the function: y=a^((sin^(-1)x)^2

Find dy/dx if y= 1/2 -x^4

Find (dy)/(dx) if y=sec^(-1)((sqrt(x)+1)/(sqrt(x)-1))+sin^(-1)((sqrt(x)-1)/(sqrt(x)+1))

Find (dy)/(dx) if 1+x^2+y^2=9

Find (dy)/(dx) , when y=e^xlog(1+x^2)

Given that y=(3x-1)^(2)+(2x-1)^(3) , find (dy)/(dx) and points on the curve for which (dy)/(dx)=0 .