Home
Class 12
MATHS
Find the approximate value of f(5. 001),...

Find the approximate value of `f(5. 001),` where `f(x)=x^3-7x^2+15.`

Text Solution

Verified by Experts

Firstly break the number 5.001 as x=5 and △x=0.001 and use the relation f(x+△x)=f(x)+△x f′(x).
Consider f(x)=`x^3-7x^2+15`
`f'(x)=3x^2-14x`
...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    NCERT ENGLISH|Exercise EXERCISE 6.5|29 Videos
  • APPLICATION OF DERIVATIVES

    NCERT ENGLISH|Exercise EXERCISE 6.1|18 Videos
  • APPLICATION OF DERIVATIVES

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|51 Videos
  • APPLICATION OF INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 8.2|7 Videos

Similar Questions

Explore conceptually related problems

Find the approximate value of f(3. 02), where f(x)=3x^2+5x+3.

Find the approximate value of f(2. 01) , where f(x)=4x^2+5x+2 .

Find the approximate value of f(2. 01) , where f(x)=4x^2+5x+2 .

Using differentials, find the approximate value of f(2. 01), where f(x)=4x^3+5x^2+2.

Find the approximate value of f(3. 02) , where f(x)=3x^2+5x+3 .

Find the approximate value of f(3. 02) , where f(x)=3x^2+5x+3 .

Find the approximate value of f(3.01) when y = f(x) = x^(2)+3x+1 .

If f(x) = 2x^(2)+5x+2 , then find the approximate value of f(2.01) .

Find the approximate value of f(3. 02), upto 2 places of decimal, where f(x)=3x^2+5x+3.

If f(x)=3x^2+15 x+5, then the approximate value of f (3. 02) is(A) 47.66 (B) 57.66 (C) 67.66 (D) 77.66