Home
Class 12
MATHS
Prove that f(theta)=(4sintheta)/(2+costh...

Prove that `f(theta)=(4sintheta)/(2+costheta)-theta` is an increasing function of `theta` in `[0,pi/2]` .

Text Solution

Verified by Experts

given:` y=frac(4sintheta)(2+cos theta)`
The derivative of y is `(8costheta+4)/(2+costheta)^2`
For y to be the increasing function, the derivative of y should be positive.
`(8costheta+4)/(2+costheta)^2>=0`,
`impliescostheta>=-1/2`
For `0<=theta<=pi/2`, `costheta` is positive . Therefore y is increasing function for `0<=theta<=pi/2`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    NCERT ENGLISH|Exercise EXERCISE 6.3|27 Videos
  • APPLICATION OF DERIVATIVES

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|51 Videos
  • APPLICATION OF DERIVATIVES

    NCERT ENGLISH|Exercise EXERCISE 6.1|18 Videos
  • APPLICATION OF INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 8.2|7 Videos

Similar Questions

Explore conceptually related problems

Prove that y=(4sintheta)/((2+costheta))-theta is an increasing function in [0,pi/2]dot

Prove that: (costheta)/(1+sintheta)=tan(pi/4-theta/2)

Prove that: (costheta)/(1+sintheta)=tan(pi/4-theta/2)

Prove that: (costheta)/(1+sintheta)=tan(pi/4-theta/2)

Prove that tantheta=(sintheta-2sin^3theta)/(2cos^3theta-costheta)

Prove that : (sintheta +sin2theta)/(1+costheta+cos2theta)=tantheta

Prove that : (sintheta-2sin^(3)theta)/(2cos^(3)theta-costheta)-tantheta

Prove that (cos theta-sintheta)/(cos theta+sintheta)=sec 2 theta-tan 2theta .

Prove that (1+costheta-sin^(2)theta)/(sintheta(1+costheta))=cottheta

Prove: (1+costheta-sin^2theta)/(sintheta(1+costheta))= cottheta