Home
Class 12
MATHS
A square piece of tin of side 18 cm i...

A square piece of tin of side 18 cm is to be made into a box without top, by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maxi

Text Solution

Verified by Experts

`A-H,G-F,E-D,B-C`
volume of box`=y^2x`
`=y^2(9-y/2)`
`=9y^2-y^3/2`
`V(y)=V\'(y)=0`
`V\'\'(y)<0`
`18y-(3y^2)/2=0`
`3(y)(6-y/2)=0`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Also, find the maximum volume.

A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top by cutting off squares from the corners and folding up the flaps. What should be the side of the square in order the volume of the box is maximum.

A rectangular sheet of tin 58 cmxx44cm is to be made into an open box by cutting off equal squares from the corners and folding up the flaps.What should be the volume of box if the surface area of box is 2452 cm^(2) ?

A square piece of cardbroad measuring x inches by x inches is to be used to form an open box by cutting off 2-inch squares, and then folding the slides up along the dotted lines, as shown in the figure above. If x is an integer , and the volume of the box must be greater than 128 cubic inches , what is the smallest value of x that can be used ?

A box of maximum volume with top open is to be made by cutting out four equal squares from four corners of a square tin sheet of side length a feet and then folding up the flaps. Find the side of the square cut-off.

A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?

A wire of length 36m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces, so that the combined area of the square and the circle is minimum?

A wire of length 36m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces, so that the combined area of the square and the circle is minimum?

An open topped box is to be constructed by removing equal squares from each corner of a 3 metre by 8 metre rectangular sheet of aluminium and folding up the sides. Find the volume of the largest such box.

From a rectangular sheet of tin, of size 100 cm by 80 cm, are cut four squares of side 10 cm from each corner. Find the area of the remaining sheet.