Home
Class 12
MATHS
If f(x)=3x^2+15 x+5,then the approximat...

If `f(x)=3x^2+15 x+5,`then the approximate value of `f (3. 02)`is(A) 47.66 (B) 57.66 (C) 67.66 (D) 77.66

Text Solution

AI Generated Solution

To find the approximate value of the function \( f(x) = 3x^2 + 15x + 5 \) at \( x = 3.02 \), we can use the concept of differentiation. Here are the steps to solve the problem: ### Step 1: Identify \( x \) and \( \Delta x \) Let: - \( x = 3 \) - \( \Delta x = 0.02 \) ### Step 2: Calculate \( f(x) \) at \( x = 3 \) ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    NCERT ENGLISH|Exercise EXERCISE 6.5|29 Videos
  • APPLICATION OF DERIVATIVES

    NCERT ENGLISH|Exercise EXERCISE 6.1|18 Videos
  • APPLICATION OF DERIVATIVES

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|51 Videos
  • APPLICATION OF INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 8.2|7 Videos

Similar Questions

Explore conceptually related problems

If f(x)=3x^(2)+4x-1 , then find the approximate value of f(3.1) .

If f(x) = 2x^(2)+5x+2 , then find the approximate value of f(2.01) .

Find the approximate value of f(3. 02) , where f(x)=3x^2+5x+3 .

Find the approximate value of f(3. 02), where f(x)=3x^2+5x+3.

Find the approximate value of f(3. 02) , where f(x)=3x^2+5x+3 .

Find the approximate value of f(3.01) when y = f(x) = x^(2)+3x+1 .

Find the approximate value of f(5. 001), where f(x)=x^3-7x^2+15.

Find the approximate value of f(5. 001), where f(x)=x^3-7x^2+15.

Find the approximate value of f(5. 001) , where f(x)=x^3-7x^2+15 .

Using differentials, find the approximate value of (66)^(1//3)