Home
Class 12
MATHS
By using the properties of definite int...

By using the properties of definite integrals, evaluate the integrals`int_0^(pi/2) (sinx-cosx)/(1+sinxcosx)dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_0^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 + \sin x \cos x} \, dx \) using the properties of definite integrals, we can follow these steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 + \sin x \cos x} \, dx \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

By using the properties of definite integrals, evaluate the integrals int_0^(pi/2) cos^2x dx

By using the properties of definite integrals, evaluate the integrals int_0^(2pi)cos^5x dx

By using the properties of definite integrals, evaluate the integrals int_0^pi (xdx)/(1+sinx)

By using the properties of definite integrals, evaluate the integrals int_0^1x(1-x)^n dx

By using the properties of definite integrals, evaluate the integrals int_0^4 |x-1|dx

By using the properties of definite integrals, evaluate the integrals int_0^pilog(1+cosx)dx

By using the properties of definite integrals, evaluate the integrals int_0^(pi/2)(2logsinx-logsin2x)dx

By using the properties of definite integrals, evaluate the integrals int_(-pi/2)^(pi/2)sin^7x dx

By using the properties of definite integrals, evaluate the integrals int_0^(2) xsqrt(2-x)dx

By using the properties of definite integrals, evaluate the integrals int_-5^5|x+2|dx