Home
Class 12
MATHS
Choose the correct answerIf f(x)=int0^x ...

Choose the correct answerIf `f(x)=int_0^x tsint dt`, then `f^(prime)(x)`is(A) `cos x + x sin x` (B) `x sin x` (C) `x cos x` (D) `sin x+ x cos x`

A

(A) `cos x + x sin x`

B

(B) `x sin x`

C

(C) `x cos x`

D

(D) `sin x+ x cos x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function defined by the integral \( f(x) = \int_0^x t \sin t \, dt \). ### Step-by-step Solution: 1. **Identify the Function**: We have the function defined as: \[ f(x) = \int_0^x t \sin t \, dt \] 2. **Apply the Fundamental Theorem of Calculus**: According to the Fundamental Theorem of Calculus, if \( F(x) = \int_a^x f(t) \, dt \), then \( F'(x) = f(x) \). In our case, we can differentiate \( f(x) \): \[ f'(x) = x \sin x \] 3. **Conclusion**: Therefore, the derivative \( f'(x) \) is: \[ f'(x) = x \sin x \] 4. **Choose the Correct Answer**: From the options provided: - (A) \( \cos x + x \sin x \) - (B) \( x \sin x \) - (C) \( x \cos x \) - (D) \( \sin x + x \cos x \) The correct answer is **(B) \( x \sin x \)**.

To solve the problem, we need to find the derivative of the function defined by the integral \( f(x) = \int_0^x t \sin t \, dt \). ### Step-by-step Solution: 1. **Identify the Function**: We have the function defined as: \[ f(x) = \int_0^x t \sin t \, dt ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.7|14 Videos
  • INTEGRALS

    NCERT ENGLISH|Exercise Exercise 7.11|20 Videos
  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.6|24 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT ENGLISH|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT ENGLISH|Exercise Solved Examples|13 Videos

Similar Questions

Explore conceptually related problems

If (x)=int_0^x tsint\ dt ,\ then write the value of f^(prime)(x)

Prove that: (sin 3 x +sin x) sin x + (cos 3x - cos x) cos x = 0

int(x sin x+cos x)/(x cos x)dx

int (cos x)/(sin x+cos x) dx

int_(0)^(pi//2) ( cos x - sin x )/( 2 + sin x cos x ) dx is equal to

If f (x) =|sin x-|cos x ||, then f '((7pi)/(6))=

Period of f(x) = sin^4 x + cos^4 x

Period of f(x) = sin^4 x + cos^4 x

int sin x cos(cos x)dx

(i) int (cos x-x sin x)/(x cos x) dx " "(ii) int(1+ cos x)/(x +sin x)^3 dx