Home
Class 12
MATHS
int(sin^2x-cos^2x)/(sin^2cos^2x)dxis eq...

`int(sin^2x-cos^2x)/(sin^2cos^2x)dx`is equal to(A) `tanx+cotx+c` (B) `tanx+cose cx+c`(C) `-tanx+cotx+c` (D) `tanx+secx+c`

A

`tanx+cotx+c`

B

`tanx+cose cx+c`

C

`-tanx+cotx+c`

D

`tanx+secx+c`

Text Solution

Verified by Experts

The correct Answer is:
A

Given `int(sin^2x-cos^2x)/(sin^2xcos^2x)dx`
`=int((sin^2x)/(sin^2xcos^2x)-cos^2x/(sin^2cos^2x))dx`
`=int(sec^2x-cosec^2x)dx`
`=tanx+cotx+c`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|46 Videos
  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.1|22 Videos
  • INTEGRALS

    NCERT ENGLISH|Exercise MISCELLANEOUS EXERCISE|44 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT ENGLISH|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT ENGLISH|Exercise Solved Examples|13 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sin^2xcos^2x) equals(A) tanx+cotx+C (B) tanx-cotx+C (C) tanxcotx+C (D) tanx-cot2x+C

int(2tanx+3)/(sin^2x+2cos^2x)dx

int\ (sin^6x + cos^6x)/(sin^2 x*cos^2x)\ dx (i) tanx+ cotx+3x+C (ii) tanx+ cotx-3x+C (iii) tanx-cotx-3x+C (iv) tanx-cotx+3x+C

int(cos4x-1)/(cotx-tanx)dx is equal to

int1/(cos^6x+sin^6x)dx is equal to (A) tan^-1(tanx-cotx)+c (B) sin^-1(sin2x)+c (C) tan^-1(tanx+cotx)+c (D) cot^-1(tanx+cotx)+c

int(1)/(tanx+cotx+secx+"cosec "x)dx is equal to

int(1)/(tanx+cotx+secx+"cosec "x)dx is equal to

intx^2/(xsinx+cosx)^2dx=-(xsecx)/(xsinx+cosx)+f(x)+c , then f(x) may be (A) sinx (B) xsinx (C) tanx (D) cotx

Solution of the differential equation cosx dy= y(sinx -y)dx , 0 lt x lt pi/2 (A) secx=(tanx+c)y (B) ysecx=tanx+c (C) ytanx=secx+c (D) tanx=(secx+c)y

int(cos2x-1)/(cos2x+1)\ dx= (a) tanx-x+C (b) x+tanx+C (c) x-tanx+C (d) x-cotx+C