Home
Class 12
MATHS
Evaluate: int(log(logx)+1/((logx)^2))dx...

Evaluate: `int(log(logx)+1/((logx)^2))dx`

Text Solution

Verified by Experts

Given `int[log(logx)+1/((logx)^2)]dx`
`=intloglogx+int1/((logx)^2)]dx`
Integrating by parts, we get
Put `u=log(logx)=>du=1/(xlogx)dx`
...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.1|22 Videos
  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.8|6 Videos
  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.3|24 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT ENGLISH|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT ENGLISH|Exercise Solved Examples|13 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int{1/(logx)-1/((logx)^2)}\ dx

Evaluate: int{1/(logx)-1/((logx)^2)}\ dx

Evalaute: int((logx-1)/(1+(logx)^2))^2dx

Evaluate: int(log(logx)/x)\ dx

int(logx/(1+logx)^2)dx

Find int[log(logx)+1/((logx)^2)]dx

Evaluate int(logx)/((1+logx)^(2))dx .

Evaluate: int(logx)/((1+logx)^2)dx

Evaluate: int(logx)^2\ dx

Evaluate: int(logx)/x\ dx